1
|
Sterr F, Bauernfeind L, Knop M, Rester C, Metzing S, Palm R. Weaning-associated interventions for ventilated intensive care patients: A scoping review. Nurs Crit Care 2024; 29:1564-1579. [PMID: 39155350 DOI: 10.1111/nicc.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Mechanical ventilation is a core intervention in critical care, but may also lead to negative consequences. Therefore, ventilator weaning is crucial for patient recovery. Numerous weaning interventions have been investigated, but an overview of interventions to evaluate different foci on weaning research is still missing. AIM To provide an overview of interventions associated with ventilator weaning. STUDY DESIGN We conducted a scoping review. A systematic search of the Medline, CINAHL and Cochrane Library databases was carried out in May 2023. Interventions from studies or reviews that aimed to extubate or decannulate mechanically ventilated patients in intensive care units were included. Studies concerning children, outpatients or non-invasive ventilation were excluded. Screening and data extraction were conducted independently by three reviewers. Identified interventions were thematically analysed and clustered. RESULTS Of the 7175 records identified, 193 studies were included. A total of six clusters were formed: entitled enteral nutrition (three studies), tracheostomy (17 studies), physical treatment (13 studies), ventilation modes and settings (47 studies), intervention bundles (42 studies), and pharmacological interventions including analgesic agents (8 studies), sedative agents (53 studies) and other agents (15 studies). CONCLUSIONS Ventilator weaning is widely researched with a special focus on ventilation modes and pharmacological agents. Some aspects remain poorly researched or unaddressed (e.g. nutrition, delirium treatment, sleep promotion). RELEVANCE TO CLINICAL PRACTICE This review compiles studies on ventilator weaning interventions in thematic clusters, highlighting the need for multidisciplinary care and consideration of various interventions. Future research should combine different interventions and investigate their interconnection.
Collapse
Affiliation(s)
- Fritz Sterr
- Faculty of Health, School of Nursing Sciences, Witten/Herdecke University, Witten, Germany
- Faculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Lydia Bauernfeind
- Faculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf, Germany
- Institute of Nursing Science and Practice, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Knop
- Faculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Christian Rester
- Faculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Sabine Metzing
- Faculty of Health, School of Nursing Sciences, Witten/Herdecke University, Witten, Germany
| | - Rebecca Palm
- Faculty of Health, School of Nursing Sciences, Witten/Herdecke University, Witten, Germany
- School VI Medicine and Health Sciences, Department of Health Services Research, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Goossen RL, Schultz MJ, Tschernko E, Chew MS, Robba C, Paulus F, van der Heiden PLJ, Buiteman-Kruizinga LA. Effects of closed loop ventilation on ventilator settings, patient outcomes and ICU staff workloads - a systematic review. Eur J Anaesthesiol 2024; 41:438-446. [PMID: 38385449 PMCID: PMC11064903 DOI: 10.1097/eja.0000000000001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Lung protective ventilation is considered standard of care in the intensive care unit. However, modifying the ventilator settings can be challenging and is time consuming. Closed loop modes of ventilation are increasingly attractive for use in critically ill patients. With closed loop ventilation, settings that are typically managed by the ICU professionals are under control of the ventilator's algorithms. OBJECTIVES To describe the effectiveness, safety, efficacy and workload with currently available closed loop ventilation modes. DESIGN Systematic review of randomised clinical trials. DATA SOURCES A comprehensive systematic search in PubMed, Embase and the Cochrane Central register of Controlled Trials search was performed in January 2023. ELIGIBILITY CRITERIA Randomised clinical trials that compared closed loop ventilation with conventional ventilation modes and reported on effectiveness, safety, efficacy or workload. RESULTS The search identified 51 studies that met the inclusion criteria. Closed loop ventilation, when compared with conventional ventilation, demonstrates enhanced management of crucial ventilator variables and parameters essential for lung protection across diverse patient cohorts. Adverse events were seldom reported. Several studies indicate potential improvements in patient outcomes with closed loop ventilation; however, it is worth noting that these studies might have been underpowered to conclusively demonstrate such benefits. Closed loop ventilation resulted in a reduction of various aspects associated with the workload of ICU professionals but there have been no studies that studied workload in sufficient detail. CONCLUSIONS Closed loop ventilation modes are at least as effective in choosing correct ventilator settings as ventilation performed by ICU professionals and have the potential to reduce the workload related to ventilation. Nevertheless, there is a lack of sufficient research to comprehensively assess the overall impact of these modes on patient outcomes, and on the workload of ICU staff.
Collapse
Affiliation(s)
- Robin L Goossen
- From the Department of Intensive Care, Amsterdam University Medical Centres, location 'AMC', Amsterdam, the Netherlands (RLG, MJS, FP, LAB-K), Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand (MJS), Nuffield Department of Medicine, University of Oxford, Oxford, UK (MJS), Department of Anaesthesia, General Intensive Care and Pain Management, Medical University Wien, Vienna, Austria (MJS, ET), Department of Anaesthesia and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden (MSC), Unit of Anaesthesia and Intensive Care, IRCCS Policlinico San Martino, Genoa, Italy (CR), ACHIEVE, Centre of Applied Research, Amsterdam University of Applied Sciences, Faculty of Health, Amsterdam (FP), Department of Intensive Care, Reinier de Graaf Hospital, Delft, the Netherlands (PL.J.H, LAB-K)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Alay GH, Tatlisuluoglu D, Turan G. Evaluation of IntelliVent-ASV® and PS-SIMV Mode Using Ultrasound (US) Measurements in Terms of Diaphragm Atrophy. Cureus 2023; 15:e40244. [PMID: 37309540 PMCID: PMC10257811 DOI: 10.7759/cureus.40244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Mechanical ventilation is a life-saving intervention for critically ill patients, but it can also lead to diaphragm atrophy, which may prolong the duration of mechanical ventilation and the length of stay in the intensive care unit. IntelliVent-ASV® (Hamilton Medical, Rhäzüns, Switzerland) is a new mode of ventilation that has been developed to reduce diaphragm atrophy by promoting spontaneous breathing efforts. In this study, we aimed to evaluate the effectiveness of IntelliVent-ASV® and pressure support-synchronized intermittent mandatory ventilation (PS-SIMV) mode in reducing diaphragm atrophy by measuring diaphragm thickness using ultrasound (US) imaging. METHODS We enrolled 60 patients who required mechanical ventilation due to respiratory failure and were randomized into two groups: IntelliVent-ASV® and PS-SIMV. We measured the diaphragm thickness using US imaging at admission and on the seventh day of mechanical ventilation. RESULTS Our results showed that diaphragm thickness decreased significantly in the PS-SIMV group but remained unchanged in the IntelliVent-ASV® group. The difference in diaphragm thickness between the two groups was statistically significant on the seventh day of mechanical ventilation. CONCLUSIONS IntelliVent-ASV® may reduce diaphragm atrophy by promoting spontaneous breathing efforts. Our study suggests that this new mode of ventilation may be a promising approach to preventing diaphragm atrophy in mechanically ventilated patients. Further studies using invasive measures of diaphragm function are warranted to confirm these findings.
Collapse
Affiliation(s)
- Gulcin Hilal Alay
- Intensive Care Unit, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, TUR
| | - Derya Tatlisuluoglu
- Intensive Care Unit, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, TUR
| | - Guldem Turan
- Intensive Care Unit, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, TUR
| |
Collapse
|
4
|
Fabes J, Wells G, Abdi Z, Ravi B, Muehlschlegel P, Fortune-Ely M, Krzanicki D, Rahman S, Spiro M. Fast-Track Extubation After Orthotopic Liver Transplant Associates with Reduced Incidence of Acute Kidney Injury and Renal Replacement Therapy: a Propensity-matched Analysis. JOURNAL OF LIVER TRANSPLANTATION 2023. [DOI: 10.1016/j.liver.2022.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
5
|
Yari H, Alikiaii B, Abbasi S, Akbari M, Kashefi P. Comparison of adaptive support ventilation and synchronized intermittent mandatory ventilation in patients with acute respiratory distress syndrome: A randomized clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2022; 27:6. [PMID: 35342439 PMCID: PMC8943583 DOI: 10.4103/jrms.jrms_905_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/22/2019] [Accepted: 07/13/2020] [Indexed: 11/04/2022]
|
6
|
de Godoi TB, Marson FAL, Palamim CVC, Cannonieri-Nonose GC. Influence of ventilatory strategies on outcomes and length of hospital stay: assist-control and synchronized intermittent mandatory ventilation modes. Intern Emerg Med 2021; 16:409-418. [PMID: 32681412 PMCID: PMC7366557 DOI: 10.1007/s11739-020-02444-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022]
Abstract
The use of synchronized intermittent mandatory ventilation with pressure support ventilation (SIMV + PSV) mode has been discontinued. This study analyzed the association between medical outcomes related to the use of assist-control (A/C) and SIMV + PSV in an intensive care unit. In this observational and retrospective study, modes of ventilation and medical data were collected from electronic medical records for three consecutive years and were related to medical outcomes (mortality), duration of mechanical ventilation, length of hospital stay and the need for tracheostomy. Participants were divided into groups according to the modes of ventilation: A/C and SIMV + PSV. Statistical analyses were performed in the R environment. Alpha = 0.05. The using chi-square, Fisher's exact, Mann-Whitney and Kruskal-Wallis tests were used. 345 adult participants were included; 211/345 (61.16%) were males. Of the participants, 151/345 (43.77%) were on SIMV + PSV and 194/345 (56.23%) were on A/C. The comparative analysis between the modes of ventilation showed no significant differences in length of hospital stay (p = 0.675), duration of mechanical ventilation (p = 0.952), mortality (p = 0.241), failed extubation (p = 0.411) and the need for tracheostomy (p = 0.301). SIMV + PSV as a mode of ventilation showed similar statistical results to the A/C mode, when compared to analyzed medical outcomes.
Collapse
Affiliation(s)
- Thais Bruno de Godoi
- Multiprofessional Internship Program in Adult Intensive Healthcare, São Francisco University, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, CEP 12916-900 Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Human and Medical Genetics, Postgraduate Program in Health Sciences, São Francisco University, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, CEP 12916-900 Brazil
| | - Camila Vantini Capasso Palamim
- Multiprofessional Internship Program in Adult Intensive Healthcare, São Francisco University, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, CEP 12916-900 Brazil
- Laboratory of Human and Medical Genetics, Postgraduate Program in Health Sciences, São Francisco University, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, CEP 12916-900 Brazil
- São Francisco University Hospital in Providência de Deus, São Francisco University, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, CEP 12916-900 Brazil
| | - Gianna Carla Cannonieri-Nonose
- Multiprofessional Internship Program in Adult Intensive Healthcare, São Francisco University, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, CEP 12916-900 Brazil
- Course of Physiotherapy, São Francisco University, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, CEP 12916-900 Brazil
| |
Collapse
|
7
|
Schönhofer B, Geiseler J, Dellweg D, Fuchs H, Moerer O, Weber-Carstens S, Westhoff M, Windisch W. Prolonged Weaning: S2k Guideline Published by the German Respiratory Society. Respiration 2020; 99:1-102. [PMID: 33302267 DOI: 10.1159/000510085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/28/2023] Open
Abstract
Mechanical ventilation (MV) is an essential part of modern intensive care medicine. MV is performed in patients with severe respiratory failure caused by respiratory muscle insufficiency and/or lung parenchymal disease; that is, when other treatments such as medication, oxygen administration, secretion management, continuous positive airway pressure (CPAP), or nasal high-flow therapy have failed. MV is required for maintaining gas exchange and allows more time to curatively treat the underlying cause of respiratory failure. In the majority of ventilated patients, liberation or "weaning" from MV is routine, without the occurrence of any major problems. However, approximately 20% of patients require ongoing MV, despite amelioration of the conditions that precipitated the need for it in the first place. Approximately 40-50% of the time spent on MV is required to liberate the patient from the ventilator, a process called "weaning". In addition to acute respiratory failure, numerous factors can influence the duration and success rate of the weaning process; these include age, comorbidities, and conditions and complications acquired during the ICU stay. According to international consensus, "prolonged weaning" is defined as the weaning process in patients who have failed at least 3 weaning attempts, or require more than 7 days of weaning after the first spontaneous breathing trial (SBT). Given that prolonged weaning is a complex process, an interdisciplinary approach is essential for it to be successful. In specialised weaning centres, approximately 50% of patients with initial weaning failure can be liberated from MV after prolonged weaning. However, the heterogeneity of patients undergoing prolonged weaning precludes the direct comparison of individual centres. Patients with persistent weaning failure either die during the weaning process, or are discharged back to their home or to a long-term care facility with ongoing MV. Urged by the growing importance of prolonged weaning, this Sk2 Guideline was first published in 2014 as an initiative of the German Respiratory Society (DGP), in conjunction with other scientific societies involved in prolonged weaning. The emergence of new research, clinical study findings and registry data, as well as the accumulation of experience in daily practice, have made the revision of this guideline necessary. The following topics are dealt with in the present guideline: Definitions, epidemiology, weaning categories, underlying pathophysiology, prevention of prolonged weaning, treatment strategies in prolonged weaning, the weaning unit, discharge from hospital on MV, and recommendations for end-of-life decisions. Special emphasis was placed on the following themes: (1) A new classification of patient sub-groups in prolonged weaning. (2) Important aspects of pulmonary rehabilitation and neurorehabilitation in prolonged weaning. (3) Infrastructure and process organisation in the care of patients in prolonged weaning based on a continuous treatment concept. (4) Changes in therapeutic goals and communication with relatives. Aspects of paediatric weaning are addressed separately within individual chapters. The main aim of the revised guideline was to summarize both current evidence and expert-based knowledge on the topic of "prolonged weaning", and to use this information as a foundation for formulating recommendations related to "prolonged weaning", not only in acute medicine but also in the field of chronic intensive care medicine. The following professionals served as important addressees for this guideline: intensivists, pulmonary medicine specialists, anaesthesiologists, internists, cardiologists, surgeons, neurologists, paediatricians, geriatricians, palliative care clinicians, rehabilitation physicians, intensive/chronic care nurses, physiotherapists, respiratory therapists, speech therapists, medical service of health insurance, and associated ventilator manufacturers.
Collapse
Affiliation(s)
- Bernd Schönhofer
- Klinikum Agnes Karll Krankenhaus, Klinikum Region Hannover, Laatzen, Germany,
| | - Jens Geiseler
- Klinikum Vest, Medizinische Klinik IV: Pneumologie, Beatmungs- und Schlafmedizin, Marl, Germany
| | - Dominic Dellweg
- Fachkrankenhaus Kloster Grafschaft GmbH, Abteilung Pneumologie II, Schmallenberg, Germany
| | - Hans Fuchs
- Universitätsklinikum Freiburg, Zentrum für Kinder- und Jugendmedizin, Neonatologie und Pädiatrische Intensivmedizin, Freiburg, Germany
| | - Onnen Moerer
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Göttingen, Germany
| | - Steffen Weber-Carstens
- Charité, Universitätsmedizin Berlin, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Virchow-Klinikum und Campus Mitte, Berlin, Germany
| | - Michael Westhoff
- Lungenklinik Hemer, Hemer, Germany
- Universität Witten/Herdecke, Herdecke, Germany
| | - Wolfram Windisch
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Universität Witten/Herdecke, Herdecke, Germany
| |
Collapse
|
8
|
Neuschwander A, Chhor V, Yavchitz A, Resche-Rigon M, Pirracchio R. Automated weaning from mechanical ventilation: Results of a Bayesian network meta-analysis. J Crit Care 2020; 61:191-198. [PMID: 33181416 DOI: 10.1016/j.jcrc.2020.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Mechanical ventilation (MV) weaning is a crucial step. Automated weaning modes reduce MV duration but the question of the best automated mode remains unanswered. Our objective was to compare the major automated modes for MV weaning in critically ill and post-operative adult patients. MATERIAL AND METHODS We conducted a network Bayesian meta-analysis to compare different automated modes. We searched MEDLINE, EMBASE and Cochrane central registry for randomized control trials comparing automated weaning modes either to another automated mode or to standard-of-care. The primary outcome was the duration of MV weaning extracted from the original trials. RESULTS 663 articles were screened and 26 trials (2097patients) were included in the final analysis. All automated modes included in the study (ASV°, Intellivent ASV, Smartcare, Automode°, PAV° and MRV°) outperformed standard-of-care but no automated mode reduced the duration of mechanical ventilation weaning as compared to others in the network meta-analysis. CONCLUSION Compared to standard weaning practice, all automated modes significantly reduced the duration of MV weaning in critically ill and post-operative adult patients. When cross-compared using a network meta-analysis, no specific mode was different in reducing the duration of MV weaning. The study was registered in PROSPERO (CRD42015024742).
Collapse
Affiliation(s)
- Arthur Neuschwander
- Service d'Anesthésie Réanimation, Hôpital Européen Georges Pompidou, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vibol Chhor
- Service d'Anesthésie Réanimation, Hôpital Européen Georges Pompidou, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Amélie Yavchitz
- Service d'Anesthésie Réanimation, Hôpital Européen Georges Pompidou, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Matthieu Resche-Rigon
- Service de Biostatistiques et Information Médicale, Hôpital Saint Louis, Unité INSERM UMR-1153, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Romain Pirracchio
- Service d'Anesthésie Réanimation, Hôpital Européen Georges Pompidou, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Anesthesia and Perioperative Medicine, San Francisco General Hospital and Trauma Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Lewis KA, Chaudhuri D, Guyatt G, Burns KEA, Bosma K, Ge L, Karachi T, Piraino T, Fernando SM, Ranganath N, Brochard L, Rochwerg B. Comparison of ventilatory modes to facilitate liberation from mechanical ventilation: protocol for a systematic review and network meta-analysis. BMJ Open 2019; 9:e030407. [PMID: 31492786 PMCID: PMC6731837 DOI: 10.1136/bmjopen-2019-030407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Timely liberation from invasive mechanical ventilation is important to reduce the risk of ventilator-associated complications. Once a patient is deemed ready to tolerate a mode of partial ventilator assist, clinicians can use one of multiple ventilatory modes. Despite multiple trials, controversy regarding the optimal ventilator mode to facilitate liberation remains. Herein, we report the protocol for a systematic review and network meta-analysis comparing modes of ventilation to facilitate the liberation of a patient from invasive mechanical ventilation. METHODS AND ANALYSIS We will search MEDLINE, EMBASE, PubMed, the Cochrane Library from inception to April 2019 for randomised trials that report on critically ill adults who have undergone invasive mechanical ventilation for at least 24 hours and have received any mode of assisted invasive mechanical ventilation compared with an alternative mode of assisted ventilation. Outcomes of interest will include: mortality, weaning success, weaning duration, duration of mechanical ventilation, duration of stay in the acute care setting and adverse events. Two reviewers will independently screen in two stages, first titles and abstracts, and then full texts, to identify eligible studies. Independently and in duplicate, two investigators will extract all data, and assess risk of bias in all eligible studies using the Modified Cochrane Risk of Bias tool. Reviewers will resolve disagreement by discussion and consultation with a third reviewer as necessary. Using a frequentist framework, we will perform random-effect network meta-analysis, including all ventilator modes in the same model. We will calculate direct and indirect estimates of treatment effect using a node-splitting procedure and report effect estimates using OR and 95% CI. We will assess certainty in effect estimates using Grading of Recommendations Assessment, Development and Evaluation methodology. ETHICS AND DISSEMINATION Research ethics board approval is not necessary. The results will be disseminated through publication in a peer-reviewed journals. PROSPERO REGISTRATION NUMBER CRD42019137786.
Collapse
Affiliation(s)
| | | | - Gordon Guyatt
- Medicine, McMaster University, Hamilton, Ontario, Canada
- Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | | | - Karen Bosma
- London Health Sciences Centre, London, Ontario, Canada
| | - Long Ge
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Tim Karachi
- Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Shannon M Fernando
- Department of Emergency Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Bram Rochwerg
- Medicine, McMaster University, Hamilton, Ontario, Canada
- Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Abstract
Closed loop control of mechanical ventilation is routine and operates behind the ventilator interface. Reducing caregiver interactions is neither an advantage for the patient or the staff. Automated systems causing lack of situational awareness of the intensive care unit are a concern. Along with autonomous systems must come monitoring and displays that display patients' current condition and response to therapy. Alert notifications for sudden escalation of therapy are required to ensure patient safety. Automated ventilation is useful in remote settings in the absence of experts. Whether automated ventilation will be accepted in large academic medical centers remains to be seen.
Collapse
|
11
|
Schädler D, Miestinger G, Becher T, Frerichs I, Weiler N, Hörmann C. Automated control of mechanical ventilation during general anaesthesia: study protocol of a bicentric observational study (AVAS). BMJ Open 2017; 7:e014742. [PMID: 28495814 PMCID: PMC5566603 DOI: 10.1136/bmjopen-2016-014742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Automated control of mechanical ventilation during general anaesthesia is not common. A novel system for automated control of most of the ventilator settings was designed and is available on an anaesthesia machine. METHODS AND ANALYSIS The 'Automated control of mechanical ventilation during general anesthesia study' (AVAS) is an international investigator-initiated bicentric observational study designed to examine safety and efficacy of the system during general anaesthesia. The system controls mechanical breathing frequency, inspiratory pressure, pressure support, inspiratory time and trigger sensitivity with the aim to keep a patient stable in user adoptable target zones. Adult patients, who are classified as American Society of Anesthesiologists physical status I, II or III, scheduled for elective surgery of the upper or lower limb or for peripheral vascular surgery in general anaesthesia without any additional regional anaesthesia technique and who gave written consent for study participation are eligible for study inclusion. Primary endpoint of the study is the frequency of specifically defined adverse events. Secondary endpoints are frequency of normoventilation, hypoventilation and hyperventilation, the time period between switch from controlled ventilation to assisted ventilation, achievement of stable assisted ventilation of the patient, proportion of time within the target zone for tidal volume, end-tidal partial pressure of carbon dioxide as individually set up for each patient by the user, frequency of alarms, frequency distribution of tidal volume, inspiratory pressure, inspiration time, expiration time, end-tidal partial pressure of carbon dioxide and the number of re-intubations. ETHICS AND DISSEMINATION AVAS will be the first clinical study investigating a novel automated system for the control of mechanical ventilation on an anaesthesia machine. The study was approved by the ethics committees of both participating study sites. In case that safety and efficacy are acceptable, a randomised controlled trial comparing the novel system with the usual practice may be warranted. TRIAL REGISTRATION DRKS DRKS00011025, registered 12 October 2016; clinicaltrials.gov ID. NCT02644005, registered 30 December 2015.
Collapse
Affiliation(s)
- Dirk Schädler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Georg Miestinger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christoph Hörmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital St. Pölten, St. Pölten, Austria
| |
Collapse
|
12
|
Aghadavoudi O, Alikiaii B, Sadeghi F. Comparison of respiratory and hemodynamic stability in patients with traumatic brain injury ventilated by two ventilator modes: Pressure regulated volume control versus synchronized intermittent mechanical ventilation. Adv Biomed Res 2016; 5:175. [PMID: 28028515 PMCID: PMC5156968 DOI: 10.4103/2277-9175.190991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/06/2016] [Indexed: 11/15/2022] Open
Abstract
Background: This study aimed to compare pressure regulated volume control (PRVC) and synchronized intermittent mechanical ventilation (SIMV) modes of ventilation according to respiratory and hemodynamic stability in patients with traumatic brain injury (TBI) admitted to Intensive Care Unit (ICU). Materials and Methods: In a randomized, single-blinded, clinical trial study, 100 patients who hospitalized in ICU due to TBI were selected and randomly divided into two groups. The first and second groups were ventilated by PRVC and SIMV modes, respectively. During mechanical ventilation, arterial blood gas and respiratory and hemodynamic parameters were also recorded and compared between the two groups. Results: According to the t-test, the mean rapid shallow breathing index (RSBI) after the first 8 h of mechanical ventilation was significantly higher in SIMV group compared with PRVC group (107.6 ± 2.75 vs. 102.2 ± 5.2, respectively, P < 0.0001). Further, according to ANOVA with repeated measures, the trend of RSBI changes had a significant difference between the two groups (P < 0.001). The trend of ratio of partial pressure arterial oxygen and fraction of inspired oxygen was different between the two groups according to Mann–Whitney–Wilcoxon test (P < 0.001). Conclusions: Using PRVC mode might be more desirable than using SIMV mode in patients with TBI due to better stability of ventilation and oxygenating. To ensure for more advantages of PRVC mode, further studies with longer follow-up and more detailed measurements are recommended.
Collapse
Affiliation(s)
- Omid Aghadavoudi
- Anesthesiology and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariba Sadeghi
- Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Postoperative Care of a Liver Transplant Recipient Using a Classification System: Type A (Stable) Versus Type B (Unstable). Crit Care Nurs Q 2016; 39:252-66. [PMID: 27254641 DOI: 10.1097/cnq.0000000000000119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Liver transplantation has become an effective and valuable option for patients with end-stage liver disease and hepatocellular carcinoma. Liver failure, an acute or chronic condition, results in impaired bile production and excretion, clotting factor production, protein synthesis, and regulation of metabolism and glucose. Some acute conditions of liver disease have the potential to recover if the liver heals on its own. However, chronic conditions, such as cirrhosis, often lead to irreversible disease and require liver transplantation. In this publication, we review the pathophysiology of liver failure, examine common conditions that ultimately lead to liver transplantation, and discuss the postoperative management of patients who are either hemodynamically stable (type A) or unstable (type B).
Collapse
|