2
|
Guerrero-Latorre L, Romero B, Bonifaz E, Timoneda N, Rusiñol M, Girones R, Rios-Touma B. Quito's virome: Metagenomic analysis of viral diversity in urban streams of Ecuador's capital city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1334-1343. [PMID: 30248857 DOI: 10.1016/j.scitotenv.2018.07.213] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
In Quito, the microbiological contamination of surface water represents a public health problem, mainly due to the lack of sewage treatment from urban wastewater. Contaminated water contributes to the transmission of many enteric pathogens through direct consumption, agricultural and recreational use. Among the different pathogens present in urban discharges, viruses play an important role on disease, being causes of gastroenteritis, hepatitis, meningitis, respiratory infections, among others. This study analyzes the presence of viruses in highly impacted surface waters of urban rivers using next-generation sequencing techniques. Three representative locations of urban rivers, receiving the main discharges from Quito sewerage system, were selected. Water samples of 500 mL were concentrated by skimmed-milk flocculation method and the viral nucleic acid was extracted and processed for high throughput sequencing using Illumina MiSeq. The results yielded very relevant data of circulating viruses in the capital of Ecuador. A total of 29 viral families were obtained, of which 26 species were associated with infections in humans. Among the 26 species identified, several were related to gastroenteritis: Human Mastadenovirus F, Bufavirus, Sapporovirus, Norwalk virus and Mamastrovirus 1. Also detected were: Gammapapillomavirus associated with skin infections, Polyomavirus 1 related to cases of kidney damage, Parechovirus A described as cause of neonatal sepsis with neurological affectations and Hepatovirus A, the etiologic agent of Hepatitis A. Other emergent viruses identified, of which its pathogenicity remains to be fully clarified, were: Bocavirus, Circovirus, Aichi Virus and Cosavirus. The wide diversity of species detected through metagenomics gives us key information about the public health risks present in the urban rivers of Quito. In addition, this study describes for the first time the presence of important infectious agents not previously reported in Ecuador and with very little reports in Latin America.
Collapse
Affiliation(s)
- Laura Guerrero-Latorre
- Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería en Biotecnología, Universidad de las Américas, Quito, Ecuador.
| | - Brigette Romero
- Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería en Biotecnología, Universidad de las Américas, Quito, Ecuador.
| | - Edison Bonifaz
- Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería en Biotecnología, Universidad de las Américas, Quito, Ecuador.
| | - Natalia Timoneda
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Rosina Girones
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Blanca Rios-Touma
- Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería Ambiental, Universidad de las Américas, Quito, Ecuador.
| |
Collapse
|
3
|
Cobos M, Aquilia L, Garay E, Ochiuzzi S, Alvarez S, Flores D, Raimondi C. Epidemiologic Study and Genotyping of BK Virus in Renal Transplant Recipients. Transplant Proc 2018; 50:458-460. [DOI: 10.1016/j.transproceed.2017.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/05/2017] [Indexed: 10/17/2022]
|
4
|
Torres C, Barrios ME, Cammarata RV, Cisterna DM, Estrada T, Martini Novas S, Cahn P, Blanco Fernández MD, Mbayed VA. High diversity of human polyomaviruses in environmental and clinical samples in Argentina: Detection of JC, BK, Merkel-cell, Malawi, and human 6 and 7 polyomaviruses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:192-202. [PMID: 26519580 DOI: 10.1016/j.scitotenv.2015.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
New human polyomaviruses have been recently described. The aim of this work was to detect and characterize human polyomaviruses circulating in Argentina by recovering viruses from environmental and sewage samples and evaluating their potential role as viral indicators of human waste contamination. Analysis was performed in a wider context including viruses from clinical samples from an immunocompromised population. River water and sewage samples were analyzed as a strategy to study the molecular epidemiology of viruses excreted by millions of people. Samples belonged to the Matanza-Riachuelo River (2005-2006: n=25 and 2012: n=20) and sewage from Buenos Aires city and suburbs (2011 and 2013: n=24). Viral detection was performed by PCR and the amplified viral genomes were characterized by phylogenetic analysis. Polyomaviruses were detected in 95.8% of sewage samples, identifying BKPyV (87.5%), JCPyV (83.3%), MCPyV (8.3%) and HPyV6 (8.3%). Besides, one sample collected in 2009 resulted positive for HPyV7. In 2005-2006, polyomaviruses were detected in 84.0% of river water samples, with the highest detection for MCPyV (52.0%), followed by BKPyV (44.0%), JCPyV (20.0%) and MWPyV (4.0%). In 2012, polyomaviruses were detected in 85.0% of river samples, finding JCPyV (85.0%), BKPyV (75.0%), MCPyV (25.0%) and HPyV6 (25.0%). Also, polyomaviruses, including JCPyV, BKPyV and MCPyV, were detected in 63.2% of urine samples from patients infected with HIV (n=19). Characterization indicated the coexistence of different genotypes and variants for each virus, particularly in sewage. MCPyV sequences (the only sequences from Argentina) formed a monophyletic group with the single sequence available for South America (French Guiana). The high level of detection and viral diversity found by environmental surveillance, which involved the characterization of viruses not previously described in South America, reinforces the usefulness of this approach to monitor viral contamination and describe the viral epidemiology in the general population.
Collapse
Affiliation(s)
- Carolina Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina; CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires (C1033AAJ), Argentina.
| | - Melina Elizabeth Barrios
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina
| | - Robertina Viviana Cammarata
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina; CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires (C1033AAJ), Argentina
| | - Daniel Marcelo Cisterna
- Servicio de Neurovirosis, INEI-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, Ciudad Autónoma de Buenos Aires (C1282AFF), Argentina
| | - Tatiana Estrada
- División Infectología, Hospital General de Agudos "Juan A. Fernández", Cerviño 3356, Ciudad Autónoma de Buenos Aires (C1425AGP), Argentina
| | - Sergio Martini Novas
- División Infectología, Hospital General de Agudos "Juan A. Fernández", Cerviño 3356, Ciudad Autónoma de Buenos Aires (C1425AGP), Argentina
| | - Pedro Cahn
- División Infectología, Hospital General de Agudos "Juan A. Fernández", Cerviño 3356, Ciudad Autónoma de Buenos Aires (C1425AGP), Argentina
| | - María Dolores Blanco Fernández
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina; CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires (C1033AAJ), Argentina
| | - Viviana Andrea Mbayed
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina; CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires (C1033AAJ), Argentina
| |
Collapse
|