1
|
Ye BM, Hyeon JM, Kim SJ, Kim MJ, Kim SR, Kim IY, Lee SB, Lee DW. Analysis of Risk Factors for Delayed Graft Function After Kidney Transplantation. Transplant Proc 2022; 54:2154-2158. [PMID: 36114044 DOI: 10.1016/j.transproceed.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Delayed graft function (DGF) is a serious complication associated with worsening outcomes in kidney transplantation. To facilitate DGF risk reduction, this study aimed to identify the incidence and modifiable risk factors of this condition in kidney transplant patients. METHODS This retrospective chart review included 220 patients who underwent kidney transplants between 2012 and 2021 at our kidney transplant center. Delayed graft function was defined as the requirement of hemodialysis within a week of transplantation. Clinical data from patients with DGF and those without this condition were compared to identify risk factors of DGF. RESULTS Of 205 eligible patients, 20 (9.76%) developed DGF. In the univariate analysis, high hemoglobin level, deceased-donor type, and longer warm and cold ischemic times were significantly associated with DGF (P < .05). In the variable selection in logistic regression analysis, high hemoglobin level, with a cutoff value of 11.35 g/dL, and deceased-donor transplants were associated with higher DGF incidence (P < .05 for both factors). CONCLUSIONS Our findings newly demonstrated that DGF occurred more frequently in patients with hemoglobin level >11.35 g/dL. As such, improvement in kidney transplantation outcomes could be achieved by reducing this modifiable risk factor.
Collapse
Affiliation(s)
- Byung Min Ye
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Je Min Hyeon
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Su Ji Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Min Jeong Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seo Rin Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Il Young Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Soo Bong Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dong Won Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| |
Collapse
|
2
|
Shrestha PC, Bhandari TR, Devbhandari M, Verma RK, Shrestha KK. Kidney transplantation from brain-dead donors in Nepal: Report of first six cases. Ann Med Surg (Lond) 2022; 81:104386. [PMID: 36147109 PMCID: PMC9486551 DOI: 10.1016/j.amsu.2022.104386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction and importance: Kidney transplantation is one of the best treatment options for patients with end-stage renal disease. More than 90% of patients awaiting renal transplantation die without getting the kidney for transplantation. Brain dead donor kidney transplantation can bridge this gap proficiently. We aim to report details of the first six patients who had undergone brain-dead donor kidney transplantation in the history of transplantation in Nepal. Case presentation We conducted a descriptive analysis of clinical data of six adult recipients with kidney transplantation from three brain-dead donors. We described postoperative complications, length of stay, graft function which was documented with serum creatinine, acute rejection episode, delayed graft function, and patient/graft survival of recipient. Recipients were between 15 and 56 years old. Three patients experienced delayed graft function. Urinary tract infection was observed in two patients, both of whom were treated with antibiotics. One patient had acute graft rejection. None of our patients required reoperation. Length of hospital stay ranged from 9 to 32 days. The postoperative graft function was 100% in all patients. There was no graft loss, and no death was observed during follow-up. Clinical discussion Following the initiation of the brain-dead donor transplantation program, a lot of work needs to be done to make it a regular practice. Thus, this program needs support from all sections of society and government. This can be the only solution to decrease the huge gap between the supply and demand of organs in Nepal. Conclusion This case reports indeed revealed impressive success in initiating a brain-dead donor kidney transplantation program in a developing country that in terms of quality, meets comprehensive standard with acceptable graft function and patient/graft survival in under limited resources healthcare setting. Kidney transplantation is one of the best treatment options for patients with end-stage renal disease. More than 90% of patients awaiting renal transplantation die without getting the kidney for tranplantation. Brain dead donor kidney transplantation can bridge this gap proficiently. We reported first six patients with brain dead donor kidney transplantation in the history of transplantation in Nepal.
Collapse
|
3
|
Pan JS, Chen YD, Ding HD, Lan TC, Zhang F, Zhong JB, Liao GY. A Statistical Prediction Model for Survival After Kidney Transplantation from Deceased Donors. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e933559. [PMID: 34972813 PMCID: PMC8729034 DOI: 10.12659/msm.933559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background In an environment of limited kidney donation resources, patient recovery and survival after kidney transplantation (KT) are highly important. We used pre-operative data of kidney recipients to build a statistical model for predicting survivability after kidney transplantation. Material/Methods A dataset was constructed from a pool of patients who received a first KT in our hospital. For allogeneic transplantation, all donated kidneys were collected from deceased donors. Logistic regression analysis was used to change continuous variables into dichotomous ones through the creation of appropriate cut-off values. A regression model based on the least absolute shrinkage and selection operator (LASSO) algorithm was used for dimensionality reduction, feature selection, and survivability prediction. We used receiver operating characteristic (ROC) analysis, calibration, and decision curve analysis (DCA) to evaluate the performance and clinical impact of the proposed model. Finally, a 10-fold cross-validation scheme was implemented to verify the model robustness. Results We identified 22 potential variables from which 30 features were selected as survivability predictors. The model established based on the LASSO regression algorithm had shown discrimination with an area under curve (AUC) value of 0.690 (95% confidence interval: 0.557–0.823) and good calibration result. DCA demonstrated clinical applicability of the prognostic model when the intervention progressed to the possibility threshold of 2%. An average AUC value of 0.691 was obtained on the validation data. Conclusions Our results suggest that the proposed model can predict the mortality risk for patients after kidney transplants and could help kidney specialists choose kidney recipients with better prognosis.
Collapse
Affiliation(s)
- Jia-Shan Pan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yi-Ding Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Han-Dong Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Tian-Chi Lan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Fei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Jin-Biao Zhong
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Gui-Yi Liao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
4
|
Li L, Li N, He C, Huang W, Fan X, Zhong Z, Wang Y, Ye Q. Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits. Mol Med Rep 2017; 16:215-223. [PMID: 28534953 PMCID: PMC5482134 DOI: 10.3892/mmr.2017.6609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain-dead donors. In the present study, two-dimensional gel electrophoresis and MALDI-TOF MS-based comparative proteomic analysis were conducted to profile the differentially-expressed proteins between brain death and the control group renal tissues. A total of 40 age- and sex-matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two-dimensional gel electrophoresis, >2-fold alterations were identified by MALDI-TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3-N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b-c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre-mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V-type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin-3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time-dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes were not obvious. PHB may therefore be a novel biomarker for primary quality evaluation of kidneys from brain-dead donors.
Collapse
Affiliation(s)
- Ling Li
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Ning Li
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Chongxiang He
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Wei Huang
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Xiaoli Fan
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zibiao Zhong
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|