1
|
Rana R, Mukherjee R, Mehan S, Khan Z, Das Gupta G, Narula AS. Molecular mechanisms of neuroprotection: The interplay of Klotho, SIRT-1, Nrf2, and HO-1 in neurological health. Behav Brain Res 2025; 485:115545. [PMID: 40120944 DOI: 10.1016/j.bbr.2025.115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Neurological disorders significantly impair neuronal function and lead to cognitive and motor deficits. This review manuscript explores the therapeutic potential of key proteins-Klotho, SIRT-1, Nrf2, and HO-1-in combating these disorders. Neurological conditions encompass neurotraumatic, neurodegenerative, and neuropsychiatric diseases, all characterized by neuronal loss and dysfunction. The complex functions of Klotho, an anti-aging protein, and SIRT-1, a histone deacetylase, highlight their roles in neuronal survival and neuroprotection through the enhancement of antioxidant defences and the modulation of stress responses. Nrf2 functions as the principal regulator of the antioxidant response, whereas HO-1 facilitates the control of oxidative stress and the resolution of inflammation. Evidence suggests that the interplay between these proteins facilitates neuroprotection by decreasing oxidative damage and promoting cognitive function. The study emphasises the significance of signalling pathways, particularly the Nrf2/HO-1 axis, which are essential in mitigating oxidative stress and inflammation linked to neurodegenerative disorders. Future therapeutic strategies must consider personalized approaches, innovative drug delivery systems, and early intervention to optimize outcomes. This review provides a comprehensive framework for understanding how targeting these pathways can mitigate the burden of neurological disorders, advancing the development of effective interventions for enhancing brain health.
Collapse
Affiliation(s)
- Ravi Rana
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Wang W, Li Y, Zhu M, Xu Q, Cui J, Liu Y, Liu Y. Danlian-Tongmai formula improves diabetic vascular calcification by regulating CCN3/NOTCH signal axis to inhibit inflammatory reaction. Front Pharmacol 2025; 15:1510030. [PMID: 39834821 PMCID: PMC11743396 DOI: 10.3389/fphar.2024.1510030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Background Vascular calcification (VC) commonly occurs in diabetes and is associated with cardiovascular disease incidence and mortality. Currently, there is no drug treatment for VC. The Danlian-Tongmai formula (DLTM) is a traditional Chinese medicine (TCM) prescription used for diabetic VC (DVC), but its mechanisms of action remain unclear. This study aims to elucidate the effects of DLTM on DVC and explore the underlying mechanisms of action. Methods Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to identify the metabolites of DLTM. A DVC rat model was established using streptozotocin (STZ) combined with vitamin D3 (VitD3). The effects of DLTM on DVC were evaluated through alizarin red staining, calcium deposition, and changes in osteogenic and contractile markers. The specific molecular mechanism of DLTM in treating diabetic VC was comprehensively analyzed by transcriptomics, molecular docking and in vivo experimental verification. Results We identified 108 major metabolites of DLTM. In vivo, high-dose DLTM significantly alleviated VC in diabetic rats. Transcriptomic analysis showed that DLTM treatment markedly altered the transcriptomic profile of rat aortas, which was associated with regulating the CCN3/NOTCH signaling pathway, promoting vascular smooth muscle contraction, and inhibiting the inflammatory responses. Molecular docking and molecular dynamics simulation demonstrated strong binding interactions between DLTM metabolites and key molecules within the CCN3/NOTCH pathway, including NOTCH1, DLL1, DLL4, hes1, and hey1. In vivo experiments confirmed that DLTM could upregulate CCN3, inhibit the activation of NOTCH signaling ligands DLL1 and downstream transcription factors hes1 and hey1, and reduce the release of inflammatory cytokines IL6, IL1β, and TNFα. Conclusion DLTM alleviates DVC by regulating the CCN3/NOTCH signaling axis to inhibit inflammatory responses. Our research provides experimental basis for clinical treatment and drug transformation of diabetic VC.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwen Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Xu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Moldovan D, Rusu C, Potra A, Tirinescu D, Ticala M, Kacso I. Food to Prevent Vascular Calcification in Chronic Kidney Disease. Nutrients 2024; 16:617. [PMID: 38474744 DOI: 10.3390/nu16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Vascular calcification (VC) is a consequence of chronic kidney disease (CKD) which is of paramount importance regarding the survival of CKD patients. VC is far from being controlled with actual medication; as a result, in recent years, diet modulation has become more compelling. The concept of medical nutritional therapy points out the idea that food may prevent or treat diseases. The aim of this review was to evaluate the influence of food habits and nutritional intervention in the occurrence and progression of VC in CKD. Evidence reports the harmfulness of ultra-processed food, food additives, and animal-based proteins due to the increased intake of high absorbable phosphorus, the scarcity of fibers, and the increased production of uremic toxins. Available data are more supportive of a plant-dominant diet, especially for the impact on gut microbiota composition, which varies significantly depending on VC presence. Magnesium has been shown to prevent VC but only in experimental and small clinical studies. Vitamin K has drawn considerable attention due to its activation of VC inhibitors. There are positive studies; unfortunately, recent trials failed to prove its efficacy in preventing VC. Future research is needed and should aim to transform food into a medical intervention to eliminate VC danger in CKD.
Collapse
Affiliation(s)
- Diana Moldovan
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Crina Rusu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Alina Potra
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Dacian Tirinescu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Maria Ticala
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Ina Kacso
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
5
|
Tanriover C, Copur S, Mutlu A, Peltek IB, Galassi A, Ciceri P, Cozzolino M, Kanbay M. Early aging and premature vascular aging in chronic kidney disease. Clin Kidney J 2023; 16:1751-1765. [PMID: 37915901 PMCID: PMC10616490 DOI: 10.1093/ckj/sfad076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 11/03/2023] Open
Abstract
Aging is the progressive decline of body functions and a number of chronic conditions can lead to premature aging characterized by frailty, a diseased vasculature, osteoporosis, and muscle wasting. One of the major conditions associated with premature and accelerated aging is chronic kidney disease (CKD), which can also result in early vascular aging and the stiffening of the arteries. Premature vascular aging in CKD patients has been considered as a marker of prognosis of mortality and cardiovascular morbidity and therefore requires further attention. Oxidative stress, inflammation, advanced glycation end products, fructose, and an aberrant gut microbiota can contribute to the development of early aging in CKD patients. There are several key molecular pathways and molecules which play a role in aging and vascular aging including nuclear factor erythroid 2-related factor 2 (Nrf-2), AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and klotho. Potential therapeutic strategies can target these pathways. Future studies are needed to better understand the importance of premature aging and early vascular aging and to develop therapeutic alternatives for these conditions.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Andrea Galassi
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Wu F, Xia X, Lei T, Du H, Hua H, Liu W, Xu B, Yang T. Inhibition of SIRT1 promotes ultraviolet B induced cataract via downregulation of the KEAP1/NFE2L2 signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112753. [PMID: 37437439 DOI: 10.1016/j.jphotobiol.2023.112753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Due to continuous exposure to ultraviolet B(UVB) radiation, eye lenses are constantly subjected to oxidative stress that induces lens epithelial cell (LEC) apoptosis, which has been associated with the inactivation of Sirtuin1 (SIRT1). It is well-established that NFE2L2 has a major protective effect on UVB-induced oxidative stress and damage. However, whether UVB radiation affects oxidative/antioxidative imbalance and damages LECs by inactivating the protective NFE2L2-mediated antioxidative stress pathway through inhibition of SIRT1 is unknown. In our research, we established in vivo and in vitro UVB exposure models in Sprague Dawley rats and SRA01/04 cells, respectively, to investigate the effect of UVB radiation on the NFE2L2/ KEAP1 pathway and the role of SIRT1 in this process. The in vivo findings revealed that UVB radiation exposure decreased Sirt1 and Nfe2l2 levels, upregulated Keap1 expression, led to an oxidative/antioxidative imbalance and increased LEC apoptosis in the eye lens. Sirt1 downregulated Keap1 expression levels, but activated Nfe2l2 and its downstream target proteins. The in vitro findings showed that UVB inhibited the deacetylation of SIRT1 target proteins and increased the acetylation levels of KEAP1 and NFE2L2. We also found that UVB radiation exposure led to a significant decrease in both co-localization levels and protein interaction between SIRT1 and KEAP1. In addition, the inhibition of SIRT1 increased KEAP1 levels, inhibited the activity of NFE2L2 and decreased co- localization levels and protein interactions between NFE2L2 and KEAP1. These results suggested that UVB radiation decreased SIRT1 levels and inhibited the KEAP1/NFE2L2 pathway, thereby reducing its antioxidant effect, which might be an important mechanism of UVB-induced cataract.
Collapse
Affiliation(s)
- Feiying Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Xinyu Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ting Lei
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Huiying Du
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Hua
- The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
7
|
Lu X, Liu X, Liang E, Yang R, Liu Y, Liu X, Yan F, Xing Y. Panax quinquefolius saponin inhibits vascular smooth muscle cell calcification via activation of nuclear factor-erythroid 2-related factor 2. BMC Complement Med Ther 2023; 23:129. [PMID: 37085826 PMCID: PMC10120105 DOI: 10.1186/s12906-023-03961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Panax quinquefolius saponin (PQS) is the main active component of Panax quinquefolius. Emerging evidence suggests that PQS exerts beneficial effects against cardiovascular diseases. However, the role and mechanism of PQS in vascular calcification are not unclear. The present study investigated the effects of PQS on the calcification of vascular smooth muscle cell (VSMCs). METHODS The present study used calcification medium containing 3 mM inorganic phosphate (Pi) to induce rat VSMCs calcification. We investigated the effects of PQS on VSMCs calcification using alizarin red staining and alkaline phosphatase (ALP) activity assays. The intracellular reactive oxygen species (ROS) levels and the transcriptional activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) were determined. The mRNA and protein expression levels of Nrf2, the antioxidant gene heme oxygenase-1 (HO-1), osteogenic markers, including runt-related transcription factor 2 (Runx2) and bone morphogenetic protein 2 (BMP2), and Kelch-like ECH-associated protein 1 (Keap1) were also measured. RESULTS Treatment with Pi significantly increased intracellular calcium deposition and ALP activity, which were suppressed by PQS in a concentration-dependent manner. During VSMCs calcification, PQS inhibited the mRNA and protein expression of Runx2 and BMP2. PQS treatment reduced intracellular ROS production and significantly upregulated Nrf2 transcriptional activity and the expression of Nrf2 and its target antioxidant gene HO-1. PQS suppressed the Pi-induced protein expression of Keap1, which is an endogenous inhibitor of Nrf2. Keap1 siRNA treatment induced Nrf2 expression and downregulated Runx2 expression in the presence of Pi and PQS. CONCLUSION Taken together, these findings suggest that PQS could effectively inhibit VSMCs calcification by ameliorating oxidative stress and regulating osteogenic genes via the promotion of Nrf2 expression.
Collapse
Affiliation(s)
- Xiaoting Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Ershun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Ruixue Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Yan Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Xiaoqiong Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Fangfang Yan
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yifan Xing
- Department of Medical Insurance, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Li Y, He S, Wang C, Jian W, Shen X, Shi Y, Liu J. Fibroblast growth factor 21 inhibits vascular calcification by ameliorating oxidative stress of vascular smooth muscle cells. Biochem Biophys Res Commun 2023; 650:39-46. [PMID: 36773338 DOI: 10.1016/j.bbrc.2023.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Vascular calcification is very common in clinical. Severe vascular calcification is related to the occurrence of adverse events. Oxidative stress (OS) plays a pathophysiological role in the formation of vascular calcification. Previous studies have demonstrated that fibroblast growth factor 21(FGF21) could inhibit vascular calcification both in vivo and in vitro. FGF21 has also been proved to promote the recovery of superoxide dismutase (SOD) and thereby alleviate OS. Thus, our assumption was that FGF21 inhibit vascular calcification partly by restoring the level of antioxidant SOD and reducing OS. In this study, we established the vascular calcification by 5/6 nephrectomy plus high phosphate diet chronic kidney disease (CKD) model. The results showed the receptor of FGF21, fibroblast growth factor receptor 1 (FGFR1) and βKlotho in the aorta increased in CKD group, and mainly located in the media of the artery. Ulteriorly, immunofluorescence (IF) and IHC staining showed that FGFR1 and βKlotho mainly existed in arterial vascular smooth muscle cells (VSMCs). When FGF21 was knock out, the calcification was more severe in FGF21 KO + CKD mice, compared to wild type (WT)+ CKD mice. The transcriptional level of vascular calcification-related genes was significantly higher in FGF21 KO mice than control group. The dihydroethidium (DHE) staining reactive oxygen species (ROS) level in the CKD group was higher compared to the control group, but lower in FGF21 KO + CKD group, and the transcriptional level of SOD1 and SOD2 in FGF21 KO + CKD group was significantly higher than that in CKD group. In conclusion, FGF21 could inhibit vascular calcification, partly by restoring the level of antioxidant SOD and reducing vascular oxidative stress. This study provides further evidence for FGF21 as a candidate drug for cardiovascular protective agents.
Collapse
Affiliation(s)
- Yingkai Li
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Songyuan He
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Cong Wang
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Wen Jian
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Xueqian Shen
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Yuchen Shi
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Jinghua Liu
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
9
|
Tang A, Zhang Y, Wu L, Lin Y, Lv L, Zhao L, Xu B, Huang Y, Li M. Klotho's impact on diabetic nephropathy and its emerging connection to diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1180169. [PMID: 37143722 PMCID: PMC10151763 DOI: 10.3389/fendo.2023.1180169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide and is a significant burden on healthcare systems. α-klotho (klotho) is a protein known for its anti-aging properties and has been shown to delay the onset of age-related diseases. Soluble klotho is produced by cleavage of the full-length transmembrane protein by a disintegrin and metalloproteases, and it exerts various physiological effects by circulating throughout the body. In type 2 diabetes and its complications DN, a significant decrease in klotho expression has been observed. This reduction in klotho levels may indicate the progression of DN and suggest that klotho may be involved in multiple pathological mechanisms that contribute to the onset and development of DN. This article examines the potential of soluble klotho as a therapeutic agent for DN, with a focus on its ability to impact multiple pathways. These pathways include anti-inflammatory and oxidative stress, anti-fibrotic, endothelial protection, prevention of vascular calcification, regulation of metabolism, maintenance of calcium and phosphate homeostasis, and regulation of cell fate through modulation of autophagy, apoptosis, and pyroptosis pathways. Diabetic retinopathy shares similar pathological mechanisms with DN, and targeting klotho may offer new insights into the prevention and treatment of both conditions. Finally, this review assesses the potential of various drugs used in clinical practice to modulate klotho levels through different mechanisms and their potential to improve DN by impacting klotho levels.
Collapse
Affiliation(s)
- Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yu Zhang
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ling Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yong Lin
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Lizeyu Lv
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
- *Correspondence: Mingquan Li,
| |
Collapse
|
10
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
11
|
Teng Y, He J, Zhong Q, Zhang Y, Lu Z, Guan T, Pan Y, Luo X, Feng W, Ou C. Grape exosome-like nanoparticles: A potential therapeutic strategy for vascular calcification. Front Pharmacol 2022; 13:1025768. [PMID: 36339605 PMCID: PMC9634175 DOI: 10.3389/fphar.2022.1025768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 02/12/2024] Open
Abstract
Vascular calcification (VC) is prevalent in hypertension, diabetes mellitus, chronic kidney disease, and aging and has been identified as an important predictor of adverse cardiovascular events. With the complicated mechanisms involved in VC, there is no effective therapy. Thus, a strategy for attenuating the development of VC is of clinical importance. Recent studies suggest that grape exosome-like nanoparticles (GENs) are involved in cell-cell communication as a means of regulating oxidative stress, inflammation, and apoptosis, which are known to modulate VC development. In this review, we discuss the roles of GENs and their potential mechanisms in the development of VC.
Collapse
Affiliation(s)
- Yintong Teng
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi He
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Zhong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yangmei Zhang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenxing Lu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianwang Guan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Pan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaodi Luo
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Weijing Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiwen Ou
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Liu YZ, Li ZX, Zhang LL, Wang D, Liu YP. Phenotypic plasticity of vascular smooth muscle cells in vascular calcification: Role of mitochondria. Front Cardiovasc Med 2022; 9:972836. [PMID: 36312244 PMCID: PMC9597684 DOI: 10.3389/fcvm.2022.972836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC) is an important hallmark of cardiovascular disease, the osteo-/chondrocyte phenotype differentiation of vascular smooth muscle cells (VSMCs) is the main cause of vascular calcification. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the VSMCs calcification. Mitochondrial participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular calcium homeostasis, apoptosis, and signal transduction. Mitochondrial dysfunction under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and metabolic disorders, which further lead to abnormal phenotypic differentiation of VSMCs. In this review, we summarize existing studies targeting mitochondria as a treatment for VC, and focus on VSMCs, highlighting recent progress in determining the roles of mitochondrial processes in regulating the phenotype transition of VSMCs, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, mitochondrial energy metabolism, and mitochondria/ER interactions. Along these lines, the impact of mitochondrial homeostasis on VC is discussed.
Collapse
|
13
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
14
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
15
|
Oxidative Stress in Calcific Aortic Valve Stenosis: Protective Role of Natural Antioxidants. Antioxidants (Basel) 2022; 11:antiox11061169. [PMID: 35740065 PMCID: PMC9219756 DOI: 10.3390/antiox11061169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is the most prevalent heart valvular disease worldwide and a slowly progressive disorder characterized by thickening of the aortic valve, calcification, and subsequent heart failure. Valvular calcification is an active cell regulation process in which valvular interstitial cells involve phenotypic conversion into osteoblasts/chondrocytes-like cells. The underlying pathophysiology is complicated, and there have been no pharmacological treatments for CAVS to date. Recent studies have suggested that an increase in oxidative stress is the major trigger of CAVS, and natural antioxidants could ameliorate the detrimental effects of reactive oxygen species in the pathogenesis of CAVS. It is imperative to review the current findings regarding the role of natural antioxidants in CAVS, as they can be a promising therapeutic approach for managing CAVS, a disorder currently without effective treatment. This review summarizes the current findings on molecular mechanisms associated with oxidative stress in the development of valvular calcification and discusses the protective roles of natural antioxidants in the prevention and treatment of CAVS.
Collapse
|
16
|
Wang S, Hu S. The Role of Sirtuins in Osteogenic Differentiation of Vascular Smooth Muscle Cells and Vascular Calcification. Front Cardiovasc Med 2022; 9:894692. [PMID: 35722093 PMCID: PMC9198215 DOI: 10.3389/fcvm.2022.894692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is a common pathological change in many chronic diseases, such as diabetes and chronic kidney disease. It is mainly deposited in the intima and media of vessels in the form of hydroxyapatite. Recently, a lot of research has been performed to show that VC is associated with various cellular stresses, such as hyperphosphate, hyperglycemia and oxidative stress. Unfortunately, our understanding of the pathogenesis of calcification is far from comprehensive. Sirtuins belong to a family of class III highly conserved deacetylases that are involved in the regulation of biological and cellular processes including mitochondrial biogenesis, metabolism, oxidative stress, inflammatory response, DNA repair, etc. Numerous studies have shown that sirtuins might play protective roles in VC, and restoring the activity of sirtuins may be a potentially effective treatment for VC. However, the exact mechanism of their vascular protection remains unclear. Here, we reviewed the roles of sirtuins in the osteogenic transformation of vascular smooth muscle cells and the development of VC. We also elucidated the applications of sirtuins agonists for the treatment of VC.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Department of Cardiology, The First People's Hospital of Wenling (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Siwang Hu
- The Orthopedic Center, The First People's Hospital of Wenling (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
- *Correspondence: Siwang Hu
| |
Collapse
|
17
|
Huang X, Wang Y, Qiu Y, Shi Q, Sun D, Yang J, Dai C, He W. Resveratrol ameliorates high-phosphate-induced VSMCs to osteoblast-like cells transdifferentiation and arterial medial calcification in CKD through regulating Wnt/β-catenin signaling. Eur J Pharmacol 2022; 925:174953. [PMID: 35483665 DOI: 10.1016/j.ejphar.2022.174953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022]
Abstract
Vascular smooth muscle cells (VSMCs) to osteoblast-like cells transdifferentiation induced by high-phosphate is a crucial step in the development of arterial medial calcification (AMC) in patients with chronic kidney disease (CKD), and previous studies implicate Wnt/β-catenin signaling in osteogenic transdifferentiation of VSMCs and AMC. Given that resveratrol's ability to modulate Wnt/β-catenin signaling in other types of cell, we tested the effect of resveratrol on high-phosphate-induced osteogenic transdifferentiation of VSMCs and AMC in CKD. Resveratrol ameliorated AMC in rats with chronic renal failure and calcium deposition in aortic rings and VSMCs cultured in a high-phosphate environment. Resveratrol also diminished high-phosphate-induced osteogenic transdifferentiation of VSMCs in cultured aortic rings and VSMCs. In vitro, resveratrol attenuated the activation of β-catenin induced by high-phosphate and inhibited the expression of Runx2, a downstream effector of Wnt/β-catenin signaling during osteogenic transdifferentiation of VSMCs. Intriguingly, resveratrol inhibited high-phosphate-induced phosphorylation of LRP6 (Ser1490), but didn't inhibit Wnt3a-induced phosphorylation of LRP6 (Ser1490) and Runx2 expression. The expression of several Wnts was induced by high-phosphate, but the expression of Wnt7a, not Wnt2b and Wnt10a could be suppressed by resveratrol. In addition, the expression of both porcupine and wntless, two obligatory proteins for Wnt secretion, was induced by high-phosphate in cultured aortic rings and VSMCs, which could be suppressed by resveratrol. In summary, these findings suggest that resveratrol possesses a vascular protective effect on retarding high-phosphate-induced osteogenic transdifferentiation of VSMCs and AMC in CKD by targeting Wnt/β-catenin signaling, which may, to a large extent, via impeding Wnt secretion.
Collapse
Affiliation(s)
- Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, China
| | - Yan Wang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, China
| | - Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, China
| | - Qinbo Shi
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, China
| | - Danqin Sun
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, China.
| |
Collapse
|
18
|
Zhang M, Li T, Tu Z, Zhang Y, Wang X, Zang D, Xu D, Feng Y, He F, Ni M, Wang D, Zhou H. Both high glucose and phosphate overload promote senescence-associated calcification of vascular muscle cells. Int Urol Nephrol 2022; 54:2719-2731. [PMID: 35396645 DOI: 10.1007/s11255-022-03195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE The NAD+-dependent deacetylase, sirtuin 1 (SIRT1), plays an important role in vascular calcification induced by high glucose and/or high phosphate levels. However, the mechanism by which SIRT1 regulates this process is still not fully understood. Thus, this study aimed to determine the role of high glucose and phosphate in vascular calcification and the molecular mechanisms underlying SIRT1 regulation. METHODS Vascular smooth muscle cells (VSMCs) were cultured under normal, high phosphate, and/or high-glucose conditions for 9 days. Alizarin red staining and calcification content analyses were used to determine calcium deposition. VSMC senescence was detected by β-galactosidase (SA-β-Gal) staining and p21 expression. RESULTS Mouse VSMCs exposed to high phosphate and high glucose in vitro showed increased calcification, which was correlated with the induction of cell senescence, as confirmed by the increased SA-β-galactosidase activity and p21 expression. SRT1720, an activator of SIRT1, inhibits p65 acetylation, the nuclear factor-κ-gene binding (NF-κB) pathway, and VSMC transdifferentiation, prevents senescence and reactive oxygen species (ROS) production, and reduces vascular calcification. In contrast, sirtinol, an inhibitor of SIRT1, increases p65 acetylation, activates the NF-κB pathway, induces vascular smooth muscle cell transdifferentiation and senescence, and promotes vascular calcification. CONCLUSIONS High glucose and high phosphate levels induce senescence and vascular calcification in VSMCs, and the combined effect of high glucose and phosphate can inhibit SIRT1 expression. SIRT1 inhibits vascular smooth muscle cell senescence and osteogenic differentiation by inhibiting NF-κB activity, thereby inhibiting vascular calcification.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tianyu Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenzhen Tu
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Yuying Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Xuerong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dandan Zang
- The Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Deping Xu
- Department of Clinical Laboratory, Affiliated Hefei Hospital of Anhui Medical University, Hefei, China
| | - Yang Feng
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Fan He
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Mingyue Ni
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China.,The Center for Scientific Research of Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Qiao Y. Reactive Oxygen Species in Cardiovascular Calcification: Role of Medicinal Plants. Front Pharmacol 2022; 13:858160. [PMID: 35370681 PMCID: PMC8964595 DOI: 10.3389/fphar.2022.858160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/25/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular calcification, including vascular calcification and calcific aortic valve disease (CAVD), is a serious worldwide health problem, especially in older adults. The mechanisms underlying cardiovascular calcifications are complex and multifactorial. An increase in reactive oxygen species (ROS) and oxidative stress play important roles in the initiation and development of cardiovascular calcification. This mini-review summarizes the recent evidence that supports the association of ROS with vascular calcification and CAVD and discusses the role of medicinal plants for the prevention and treatment of cardiovascular calcification.
Collapse
Affiliation(s)
- Yu Qiao
- King's College London, London, United Kingdom
| |
Collapse
|
20
|
Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D’Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci 2022; 23:4027. [PMID: 35409389 PMCID: PMC8999966 DOI: 10.3390/ijms23074027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Resveratrol is a polyphenol that has been shown to possess many applications in different fields of medicine. This systematic review has drawn attention to the axis between resveratrol and human microbiota, which plays a key role in maintaining an adequate immune response that can lead to different diseases when compromised. Resveratrol can also be an asset in new technologies, such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January 2022, with English-language restriction using the following Boolean keywords: ("resveratrol" AND "microbio*"). Eighteen studies were included as relevant papers matching the purpose of our investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy, and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host's genetic expression and the gastrointestinal microbial community with its administration. The possibility of identifying individual microbial families may allow to tailor therapeutic plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and metabolic syndrome.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Maria Grazia Garibaldi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Zamira Kruti
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonella Tarullo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Kongresi Elbasanit, Aqif Pasha, Rruga, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Megan Jones
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Maspero
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Kenan Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Arberesha Bexheti Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| |
Collapse
|
21
|
Abstract
Endometriosis, characterized by macroscopic lesions in the ovaries, is a serious problem for women who desire conception. Damage to the ovarian cortex is inevitable when lesions are removed via surgery, which finally decreases the ovarian reserve, thereby accelerating the transition to the menopausal state. Soon after cessation of ovarian function, in addition to climacteric symptoms, dyslipidemia and osteopenia are known to occur in women aged >50 years. Epidemiologically, there are sex-related differences in the frequencies of dyslipidemia, hypertension, and osteoporosis. Females are more susceptible to these diseases, prevention of which is important for healthy life expectancy. Dyslipidemia and hypertension are associated with the progression of arteriosclerosis, and arteriosclerotic changes in the large and middle blood vessels are one of the main causes of myocardial and cerebral infarctions. Osteoporosis is associated with aberrant fractures in the spine and hip, which may confine the patients to the bed for long durations. Bone resorption is accelerated by activated osteoclasts, and rapid bone remodeling reduces bone mineral density. Resveratrol, a plant-derived molecule that promotes the function and expression of the sirtuin, SIRT1, has been attracting attention, and many reports have shown that resveratrol might exert cardiovascular protective effects. Preclinical reports also indicate that it can prevent bone loss and endometriosis. In this review, I have described the possible protective effects of resveratrol against arteriosclerosis, osteoporosis, and endometriosis because of its wide-ranging functions, including anti-inflammatory and antioxidative stress functions. As ovarian function inevitably declines after 40 years, intake of resveratrol can be beneficial for women with endometriosis aged <40 years.
Collapse
|
22
|
Liu H, Johnston LJ, Wang F, Ma X. Triggers for the Nrf2/ARE Signaling Pathway and Its Nutritional Regulation: Potential Therapeutic Applications of Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms222111411. [PMID: 34768841 PMCID: PMC8583850 DOI: 10.3390/ijms222111411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC), which affects millions of people worldwide, is characterized by extensive colonic injury involving mucosal and submucosal layers of the colon. Nuclear factor E2-related factor 2 (Nrf2) plays a critical role in cellular protection against oxidant-induced stress. Antioxidant response element (ARE) is the binding site recognized by Nrf2 and leads to the expression of phase II detoxifying enzymes and antioxidant proteins. The Nrf2/ARE system is a key factor for preventing and resolving tissue injury and inflammation in disease conditions such as UC. Researchers have proposed that both Keap1-dependent and Keap1-independent cascades contribute positive effects on activation of the Nrf2/ARE pathway. In this review, we summarize the present knowledge on mechanisms controlling the activation process. We will further review nutritional compounds that can modulate activation of the Nrf2/ARE pathway and may be used as potential therapeutic application of UC. These comprehensive data will help us to better understand the Nrf2/ARE signaling pathway and promote its effective application in response to common diseases induced by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hu Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (F.W.)
| | - Lee J. Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA;
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (F.W.)
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (F.W.)
- Correspondence:
| |
Collapse
|
23
|
Bourne LE, Patel JJ, Davies BK, Neven E, Verhulst A, D'Haese PC, Wheeler-Jones CPD, Orriss IR. N-acetylcysteine (NAC) differentially affects arterial medial calcification and bone formation: The role of l-cysteine and hydrogen sulphide. J Cell Physiol 2021; 237:1070-1086. [PMID: 34658034 DOI: 10.1002/jcp.30605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.
Collapse
Affiliation(s)
- Lucie E Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Jessal J Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Bethan K Davies
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ellen Neven
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Anja Verhulst
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Patrick C D'Haese
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | | | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
24
|
Hammad SK, Eissa RG, Shaheen MA, Younis NN. Resveratrol Ameliorates Aortic Calcification in Ovariectomized Rats via SIRT1 Signaling. Curr Issues Mol Biol 2021; 43:1057-1071. [PMID: 34563044 PMCID: PMC8928980 DOI: 10.3390/cimb43020075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Postmenopausal women are at an increased risk of vascular calcification which is defined as the pathological deposition of minerals in the vasculature, and is strongly linked with increased cardiovascular disease risk. Since estrogen-replacement therapy is associated with increased cancer risk, there is a strong need for safer therapeutic approaches. In this study we aimed to investigate the protective and therapeutic effects of the phytoestrogen resveratrol against vascular calcification in ovariectomized rats, a preclinical model of postmenopause. Furthermore, we aimed to compare the effects of resveratrol to those of estrogen and to explore the mechanisms underpinning those effects. Treatment with resveratrol or estrogen ameliorated aortic calcification in ovariectomized rats, as shown by reduced calcium deposition in the arterial wall. Mechanistically, the effects of resveratrol and estrogen were mediated via the activation of SIRT1 signaling. SIRT1 protein expression was downregulated in the aortas of ovariectomized rats, and upregulated in rats treated with resveratrol or estrogen. Moreover, resveratrol and estrogen reduced the levels of the osteogenic markers: runt-related transcription factor 2 (RUNX2), osteocalcin and alkaline phosphatase (ALP) which have been shown to play a role during vascular calcification. Additionally, the senescence markers (p53, p16 and p21) which were also reported to play a role in the pathogenesis of vascular calcification, were reduced upon treatment with resveratrol and estrogen. In conclusion, the phytoestrogen resveratrol may be a safer alternative to estrogen, as a therapeutic approach against the progression of vascular calcification during postmenopause.
Collapse
Affiliation(s)
- Sally K. Hammad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| | - Rana G. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| | - Mohamed A. Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Nahla N. Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.G.E.); (N.N.Y.)
| |
Collapse
|
25
|
Garrigue P, Mounien L, Champion S, Mouhajir Y, Pechere L, Guillet B, Landrier JF, Seree E. Long-term administration of resveratrol at low doses improves neurocognitive performance as well as cerebral blood flow and modulates the inflammatory pathways in the brain. J Nutr Biochem 2021; 97:108786. [PMID: 34082127 DOI: 10.1016/j.jnutbio.2021.108786] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 01/24/2023]
Abstract
There is an increasing prevalence of coincident cerebrovascular deficiency and cognitive dysfunction with aging. Increased oxidative stress as well as inflammation that occurs with aging are associated with the impairment of cerebral vascularization. Interestingly, Resveratrol (RSV), a natural phytoalexin, is known to be a strong antioxidant and possesses anti-inflammatory properties. Collectively, these observations strongly suggest that RSV could protect against cerebral vascularization defect and then improves the decline cognitive function associated with aging. In order to test this hypothesis, we investigated the effect of a long-term RSV treatment (1.25 mg/day for 5 months) on cognitive performances of animals that we have allowed to age normally. Then, we further analyzed the gene expression profile and the cerebral blood flow in the brain. By means of novel object recognition (NOR) test, we observed that RSV enhanced NOR performances of aged rats. In addition, RSV enhanced cerebral blood flow during NOR task in aged rats. Using microarrays experiments, we also showed that several pathways related to inflammation and oxidative stress (Eicosanoid signaling, MIF-mediated innate immunity, NF-kB signaling, TNFR2 signaling, IL6 signaling, Production of nitric oxide and ROS) were down-regulated in the brain of RSV treatments rats compared to control rats. In conclusion, these results support that a long-term treatment with RSV improves cognitive performance in the elderly male rat model. This effect is associated with an increase in cerebral blood flow and a decrease in the expression of several pro-inflammatory pathways in the brain.
Collapse
Affiliation(s)
- Philippe Garrigue
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France; Aix-Marseille Univ, Centre Européen de Recherche en Imagerie Médicale (CERIMED), 13005 Marseille, France
| | - Lourdes Mounien
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| | | | - Yassin Mouhajir
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| | | | - Benjamin Guillet
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France; Aix-Marseille Univ, Centre Européen de Recherche en Imagerie Médicale (CERIMED), 13005 Marseille, France
| | | | - Eric Seree
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France.
| |
Collapse
|
26
|
Liu X, Chen A, Liang Q, Yang X, Dong Q, Fu M, Wang S, Li Y, Ye Y, Lan Z, Chen Y, Ou J, Yang P, Lu L, Yan J. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway. Aging Cell 2021; 20:e13377. [PMID: 33969611 PMCID: PMC8208796 DOI: 10.1111/acel.13377] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular calcification is a common pathologic condition in patients with chronic kidney disease (CKD) and aging individuals. It has been established that vascular calcification is a gene‐regulated biological process resembling osteogenesis involving osteogenic differentiation. However, there is no efficient treatment available for vascular calcification so far. The natural polyamine spermidine has been demonstrated to increase life span and protect against cardiovascular disease. It is unclear whether spermidine supplementation inhibits vascular calcification in CKD. Alizarin red staining and quantification of calcium content showed that spermidine treatment markedly reduced mineral deposition in both rat and human vascular smooth muscle cells (VSMCs) under osteogenic conditions. Additionally, western blot analysis revealed that spermidine treatment inhibited osteogenic differentiation of rat and human VSMCs. Moreover, spermidine treatment remarkably attenuated calcification of rat and human arterial rings ex vivo and aortic calcification in rats with CKD. Furthermore, treatment with spermidine induced the upregulation of Sirtuin 1 (SIRT1) in VSMCs and resulted in the downregulation of endoplasmic reticulum (ER) stress signaling components, such as activating transcription factor 4 (ATF4) and CCAAT/enhancer‐binding protein homologous protein (CHOP). Both pharmacological inhibition of SIRT1 by SIRT1 inhibitor EX527 and knockdown of SIRT1 by siRNA markedly blocked the inhibitory effect of spermidine on VSMC calcification. Consistently, EX527 abrogated the inhibitory effect of spermidine on aortic calcification in CKD rats. We for the first time demonstrate that spermidine alleviates vascular calcification in CKD by upregulating SIRT1 and inhibiting ER stress, and this may develop a promising therapeutic treatment to ameliorate vascular calcification in CKD.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - An Chen
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Qingchun Liang
- Department of Anesthesiology The Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Xiulin Yang
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Qianqian Dong
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Mingwei Fu
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Siyi Wang
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Yining Li
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Yuanzhi Ye
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Zirong Lan
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Yanting Chen
- Department of Pathophysiolgy Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Jing‐Song Ou
- Division of Cardiac Surgery The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Pingzhen Yang
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Lihe Lu
- Department of Pathophysiolgy Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Jianyun Yan
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| |
Collapse
|
27
|
Hu CT, Shao YD, Liu YZ, Xiao X, Cheng ZB, Qu SL, Huang L, Zhang C. Oxidative stress in vascular calcification. Clin Chim Acta 2021; 519:101-110. [PMID: 33887264 DOI: 10.1016/j.cca.2021.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Vascular calcification (VC), which is closely associated with significant mortality in cardiovascular disease, chronic kidney disease (CKD), and/or diabetes mellitus, is characterized by abnormal deposits of hydroxyapatite minerals in the arterial wall. The impact of oxidative stress (OS) on the onset and progression of VC has not been well described. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, myeloperoxidase (MPO), nitric oxide synthases (NOSs), superoxide dismutase (SOD) and paraoxonases (PONs) are relevant factors that influence the production of reactive oxygen species (ROS). Furthermore, excess ROS-induced OS has emerged as a critical mediator promoting VC through several mechanisms, including phosphate balance, differentiation of vascular smooth muscle cells (VSMCs), inflammation, DNA damage, and extracellular matrix remodeling. Because OS is a significant regulator of VC, antioxidants may be considered as novel treatment options.
Collapse
Affiliation(s)
- Chu-Ting Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Medical Laboratory, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Duo Shao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
28
|
Balogh E, Chowdhury A, Ababneh H, Csiki DM, Tóth A, Jeney V. Heme-Mediated Activation of the Nrf2/HO-1 Axis Attenuates Calcification of Valve Interstitial Cells. Biomedicines 2021; 9:biomedicines9040427. [PMID: 33920891 PMCID: PMC8071288 DOI: 10.3390/biomedicines9040427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Calcific aortic valve stenosis (CAVS) is a heart disease characterized by the progressive fibro-calcific remodeling of the aortic valves, an actively regulated process with the involvement of the reactive oxygen species-mediated differentiation of valvular interstitial cells (VICs) into osteoblast-like cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of a variety of antioxidant genes, and plays a protective role in valve calcification. Heme oxygenase-1 (HO-1), an Nrf2-target gene, is upregulated in human calcified aortic valves. Therefore, we investigated the effect of Nrf2/HO-1 axis in VIC calcification. We induced osteogenic differentiation of human VICs with elevated phosphate and calcium-containing osteogenic medium (OM) in the presence of heme. Heme inhibited Ca deposition and OM-induced increase in alkaline phosphatase and osteocalcin (OCN) expression. Heme induced Nrf2 and HO-1 expression in VICs. Heme lost its anti-calcification potential when we blocked transcriptional activity Nrf2 or enzyme activity of HO-1. The heme catabolism products bilirubin, carbon monoxide, and iron, and also ferritin inhibited OM-induced Ca deposition and OCN expression in VICs. This study suggests that heme-mediated activation of the Nrf2/HO-1 pathway inhibits the calcification of VICs. The anti-calcification effect of heme is attributed to the end products of HO-1-catalyzed heme degradation and ferritin.
Collapse
Affiliation(s)
- Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
| | - Arpan Chowdhury
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Haneen Ababneh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dávid Máté Csiki
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Correspondence:
| |
Collapse
|
29
|
Prevention of Vascular Calcification by Magnesium and Selected Polyphenols. Adv Prev Med 2021; 2021:6686597. [PMID: 33927901 PMCID: PMC8053061 DOI: 10.1155/2021/6686597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Arterial vascular calcification (VC) represents formation of calcium phosphate deposits on the interior of arteries, which could restrict blood flow leading to heart health problems, including morbidity and mortality. VC is a complex and tightly regulated process that involves transformation of vascular smooth muscle cells (VSMCs) to bone-like cells and subsequent deposition of calcium as hydroxyapatite. Natural bioactives, including quercetin (Q), curcumin (C), resveratrol (R), and magnesium (Mg), have been reported to inhibit VC. Thus, we conducted an in vitro study using rat vascular smooth muscle cells (rVSMCs) to evaluate the protective effect of natural bioactives found in OptiCel, that is, Mg combined with polyphenols (PPs), Q, C, and R. Calcification was induced by culturing rVSMCs in a high phosphate (HP) medium. The addition of Mg and Q + C + R separately decreased the HP-induced calcium deposition by 37.55% and 42.78%, respectively. In contrast, when Mg was combined with Q, C, and R, the inhibition of calcium deposition was decreased by 92.88%, which is greater than their calculated additive inhibition (80.33%). These results demonstrate that the combination of Mg with selected PPs (Q, C, and R) is more effective than when used separately. The findings also suggest the combination has a synergistic effect in inhibiting VC, which is a risk factor for cardiovascular disease. Thus, regular consumption of these natural bioactives could have a beneficial effect in reducing the development of heart diseases.
Collapse
|
30
|
The Role of Resveratrol in Liver Disease: A Comprehensive Review from In Vitro to Clinical Trials. Nutrients 2021; 13:nu13030933. [PMID: 33805795 PMCID: PMC7999728 DOI: 10.3390/nu13030933] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Many studies have shown that resveratrol has a lot of therapeutic effects on liver disorders. Its administration can significantly increase the survival rate after liver transplantation, reduce fat deposition and ischemia-induced necrosis and apoptosis in Wistar rats. Resveratrol can provide Liver protection against chemical, cholestatic, and alcohol-mediated damage. It can improve glucose metabolism and lipid profile, reduce liver fibrosis, and steatosis. Additionally, it is capable of altering the fatty acid composition of the liver cells. Resveratrol may be a potential treatment option for the management of non-alcoholic fatty liver disease (NAFLD) due to its anti-inflammatory, antioxidant, and calorie-restricting effects. There are also studies that have evaluated the effect of resveratrol on lipid and liver enzyme profiles among patients with metabolic syndrome (MetS) and related disorders. Based on the extent of liver disease worldwide and the need to find new treatment possibilities, this review critically examines current in vitro and in vivo preclinical studies and human clinical studies related to liver protection.
Collapse
|
31
|
Xia J, Cao W. Epigenetic modifications of Klotho expression in kidney diseases. J Mol Med (Berl) 2021; 99:581-592. [PMID: 33547909 DOI: 10.1007/s00109-021-02044-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Developments of many renal diseases are substantially influenced by epigenetic modifications of numerous genes, mainly mediated by DNA methylations, histone modifications, and microRNA interference; however, not all gene modifications causally affect the disease onset or progression. Klotho is a critical gene whose repressions in various pathological conditions reportedly involve epigenetic regulatory mechanisms. Klotho is almost unexceptionally repressed early after acute or chronic renal injuries and its levels inversely correlated with the disease progression and severity. Moreover, the strategies of Klotho derepression via epigenetic modulations beneficially change the pathological courses both in vitro and in vivo. Hence, Klotho is not only considered a biomarker of the renal disease but also a potential or even an ideal target of therapeutic epigenetic intervention. Here, we summarize and discuss studies that investigate the Klotho repression and intervention in renal diseases from an epigenetic point of view. These information might shed new sights into the effective therapeutic strategies to prevent and treat various renal disorders.
Collapse
Affiliation(s)
- Jinkun Xia
- Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
32
|
Yin L, Li X, Ghosh S, Xie C, Chen J, Huang H. Role of gut microbiota-derived metabolites on vascular calcification in CKD. J Cell Mol Med 2020; 25:1332-1341. [PMID: 33369187 PMCID: PMC7875928 DOI: 10.1111/jcmm.16230] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
The interaction between gut microbiota and the host has gained widespread concern. Gut microbiota not only provides nutrients from the ingested food but also generates bioactive metabolites and signalling molecules to impact host physiology, especially in chronic kidney disease (CKD). The development of CKD, accompanied by changed diet and medication, alters the gut flora and causes the effect in distant organs, leading to clinical complications. Vascular calcification (VC) is an actively regulated process and a high prevalence of VC in CKD has also been linked to an imbalance in gut microbiota and altered metabolites. In this review, we focused on gut microbiota-derived metabolites involved in VC in CKD and explained how these metabolites influence the calcification process. Correcting the imbalance of gut microbiota and regulating microbiota-derived metabolites by dietary modification and probiotics are new targets for the improvement of the gut-kidney axis, which indicate innovative treatment options of VC in CKD.
Collapse
Affiliation(s)
- Li Yin
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - XiaoXue Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Sounak Ghosh
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Changming Xie
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
33
|
Khongsti K, Das KB, Das B. MAPK pathway and SIRT1 are involved in the down-regulation of secreted osteopontin expression by genistein in metastatic cancer cells. Life Sci 2020; 265:118787. [PMID: 33249095 DOI: 10.1016/j.lfs.2020.118787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
AIM The regulation of secreted osteopontin (OPN) expression by genistein and its functional sequel in the metastatic cancer cells (MDA-MB-435 and MDA-MB-231) was ascertained. MAIN METHODS Western blot and Real-Time PCR were used to analyse the proteins and mRNA transcripts, respectively. Possible transcriptional regulation of secreted OPN was analyzed by chromatin immunoprecipitation assay, bioinformatics analysis, transfection and luciferase reporter assay. The specific siRNAs and constitutive p-ERKs were used to evaluate the role of the MAPK pathway. The functional sequel of genistein in these cells was analyzed by colony formation-, migration- and invasion- assay. KEY FINDINGS Secreted OPN expression was inhibited (up to ~0.7-fold) by genistein in these cells. Genistein (50 μM) displayed a reduction in the aggressiveness of these cells concerning colony formation rate, migration, and invasion. The p-ERK½ was increased by ~2.5-fold and ~1.5-fold upon 50 μM genistein and 15 μM resveratrol treatments at 24 h, respectively. Knockdown of ERK½ and PD98059, the inhibitor of MEK, promoted secreted OPN expression in vitro in these cells; while, the transfection of the constitutive active ERK2 (L73P and S151D) decreased the secreted OPN expression. Further, silent mating type information regulation 2 homolog 1 (SIRT1) expression in the cells was increased (~1.6-fold) upon genistein treatment (50 μM) likewise with resveratrol (~1.5-fold), an activator for SIRT1. Knockdown of SIRT1 increased OPN mRNA transcripts expression level and secreted OPN protein level in these cells. SIGNIFICANCE MAPK pathway and SIRT1 activation are involved in the regulation of secreted OPN by genistein in these cells.
Collapse
Affiliation(s)
- Kitboklang Khongsti
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | | | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
34
|
Carrizzo A, Izzo C, Forte M, Sommella E, Di Pietro P, Venturini E, Ciccarelli M, Galasso G, Rubattu S, Campiglia P, Sciarretta S, Frati G, Vecchione C. A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E8706. [PMID: 33218062 PMCID: PMC7698807 DOI: 10.3390/ijms21228706] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.
Collapse
Affiliation(s)
- Albino Carrizzo
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Carmine Izzo
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Maurizio Forte
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Paola Di Pietro
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Eleonora Venturini
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Gennaro Galasso
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Speranza Rubattu
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Petro Campiglia
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Sebastiano Sciarretta
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Giacomo Frati
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Carmine Vecchione
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| |
Collapse
|
35
|
The role of sirt1 in the retinal ganglion cells cultured by high glucose. Int Ophthalmol 2020; 41:845-852. [PMID: 33174070 DOI: 10.1007/s10792-020-01638-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To observe the effect of sirt1 on retinal ganglion cells (RGC) with high glucose culture and to explore the role of sirt1 in the development of diabetic retinopathy. Method RGC was infected by sirt1 lentivirus overexpression vector pLV5-sirt1 and interference vector pLV3-si-sirt1. The normal control group and control virus vector group were set up at the same time. After 48 h of infection, the viability of RGC was detected by CCK8 kit, the apoptosis rate was detected by FCM analysis, and the protein expression of p53, FOXO3a, NF-κ B, caspase-3 was detected by Western blot. RESULTS After RGC were infected with lentivirus, the cell viability of lentivirus overexpression vector pLV5-sirt1 was significantly higher than that of the high glucose group and the sirt1 overexpression control group, while the cell viability of interference vector pLV3-si-sirt1 was significantly lower than that of the high glucose group and the sirt1 interference control group (P < 0.05). At the same time, the apoptosis rate of RGC cells infected by lentivirus overexpression vector pLV5-sirt1 was lower than that of the high glucose group and the control virus vector group, while the apoptosis rate of the interference vector pLV3-si-sirt1 cells was significantly higher than that of the high glucose group and the control virus vector group (P < 0.05). The results of Western blotting showed that the expression of p53, FOXO3a, NF-κ B and caspase-3 in RGC cells decreased significantly after infection with pLV5-sirt1 compared with the high glucose group and the control virus vector group, while the expression of p53, FOXO3a, NF-κB and caspase-3 in RGC cells increased significantly after infection with pLV3-si-sirt1 (P < 0.05). CONCLUSION Sirt1 can inhibit the apoptosis of RGCs through regulating the expression of some apoptotic cytokinessome, and it can be used as a candidate gene for the biotherapy of retinal diseases.
Collapse
|
36
|
Regulation of Vascular Calcification by Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9100963. [PMID: 33049989 PMCID: PMC7599480 DOI: 10.3390/antiox9100963] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.
Collapse
|
37
|
The Preventive Effects of Xanthohumol on Vascular Calcification Induced by Vitamin D 3 Plus Nicotine. Antioxidants (Basel) 2020; 9:antiox9100956. [PMID: 33036258 PMCID: PMC7599490 DOI: 10.3390/antiox9100956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification (VC) is highly prevalent in patients with atherosclerosis, chronic kidney disease, diabetes mellitus, and hypertension. In blood vessels, VC is associated with major adverse cardiovascular events. Xanthohumol (XN), a main prenylated chalcone found in hops, has antioxidant effects to inhibit VC. This study aimed to investigate whether XN attenuates VC through in vivo study. A rat VC model was established by four weeks oral administration of vitamin D3 plus nicotine in Sprague Dawley (SD) rats. In brief, 30 male SD rats were randomly divided into three groups: control, 25 mg/kg nicotine in 5 mL corn oil and 3 × 105 IU/kg vitamin D3 administration (VDN), and combination of VDN with 20 mg/L in 0.1% ethanol of XN (treatment group). Physiological variables such as body and heart weight and drinking consumption were weekly observed, and treatment with XN caused no differences among the groups. In comparison with the control group, calcium content and alkaline phosphatase (ALP) activity were increased in calcified arteries, and XN treatment reduced these levels. Dihydroethidium (DHE) and 2′,7′-dichloroflurescin diacetate (DCFH-DA) staining to identify Superoxide and reactive oxygen species generation from aorta tissue showed increased production in VDN group compared with the control and treatment groups. Hematoxylin eosin (HE) and Alizarin Red S staining were determined to show medial vascular thickness and calcification of vessel wall. Administration of VDN resulted in VC, and XN treatment showed improvement in vascular structure. Moreover, overexpression of osteogenic transcription factors bone morphogenetic protein 2 (BMP-2) and runt-related transcription factor 2 (Runx2) were significantly suppressed by XN treatment in VC. Moreover, downregulation of vascular phenotypic markers alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) were increased by XN treatment in VC. Furthermore, XN treatment in VC upregulated nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions. Otherwise, Kelch-like ECH-associated protein 1 (Keap1) was alleviated by XN treatment in VC. In conclusion, our findings suggested that XN enhances antioxidant capacity to improve VC by regulating the Nrf2/Keap1/HO-1 pathway. Therefore, XN may have potential effects to decrease cardiovascular risk by reducing VC.
Collapse
|
38
|
Lee J, Hong SW, Kim MJ, Kwon H, Park SE, Rhee EJ, Lee WY. Metformin, resveratrol, and exendin-4 inhibit high phosphate-induced vascular calcification via AMPK-RANKL signaling. Biochem Biophys Res Commun 2020; 530:374-380. [PMID: 32800550 DOI: 10.1016/j.bbrc.2020.07.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Vascular calcification increases the risk of developing cardiovascular disease, and it is closely associated with metabolic disorders such as diabetes mellitus and non-alcoholic fatty liver disease. We investigated whether the activators of AMP-activated protein kinase (AMPK), metformin, resveratrol, and exendin-4, improved inorganic phosphate (Pi)-induced vascular calcification in rat vascular smooth muscle cells (VSMCs) and whether these effects were via AMPK. Pi increased calcium deposition in a dose-dependent manner, and metformin, resveratrol, and exendin-4 significantly decreased calcium deposition in the Pi-treated VSMCs. Moreover, metformin and exendin-4 increased the expression of a SMC marker gene, α-smooth muscle actin, and Ampk and reduced the receptor activator of nuclear factor kappa-Β ligand (Rankl)/osteoprotegerin ratio. Metformin, resveratrol, and exendin-4 reduced the expression of osteoblast differentiation-associated factors, such as runt-related transcription factor 2, bone morphogenic protein-2, p-small mothers against decapentaplegic 1/5/8, and Rankl. Inhibition of AMPK by siRNA adversely affected the anti-calcification effects of metformin, resveratrol, and exendin-4 and reversed the reduction of the expression of Rankl by metformin and exendin-4 in the Pi-treated VSMCs. These data suggest that metformin, resveratrol, and exendin-4 ameliorate Pi-induced vascular calcification by inhibiting osteoblast differentiation of VSMCs, which is mediated by AMPK.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Hyemi Kwon
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Se Eun Park
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Eun-Jung Rhee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea.
| | - Won-Young Lee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea.
| |
Collapse
|
39
|
Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020; 34:101475. [PMID: 32336668 PMCID: PMC7327986 DOI: 10.1016/j.redox.2020.101475] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Living organisms are surrounded with heavy metals such as methylmercury, manganese, cobalt, cadmium, arsenic, as well as pesticides such as deltamethrin and paraquat, or atmospheric pollutants such as quinone. Extensive studies have demonstrated a strong link between environmental pollutants and human health. Redox toxicity is proposed as one of the main mechanisms of chemical-induced pathology in humans. Acting as both a sensor of oxidative stress and a positive regulator of antioxidants, the nuclear factor erythroid 2-related factor 2 (NRF2) has attracted recent attention. However, the role NRF2 plays in environmental pollutant-induced toxicity has not been systematically addressed. Here, we characterize NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones. NRF2 related signaling pathways and epigenetic regulations are also reviewed.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States
| | - Yumi Abiko
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| |
Collapse
|
40
|
Abstract
Vascular calcification (VC) was defined as the ectopic deposition of calcium-phosphorus complexes on the blood vessel walls. It was a process involving multiple factors and mechanisms, covering the phenotype transition of vascular smooth muscle cells (VSMCs) and release of microvesicles. It was a common end-stage alteration of chronic diseases such as cardiovascular disease and chronic kidney disease. Increasing evidence indicates that mitochondria were involved in the development of VC. Mitochondria provided energy to cells, maintained the stability of cell functions, and participated in a variety of biological behavior. Oxidative stress, autophagy, apoptosis, and mitochondrial DNA (mtDNA) damage could affect the development of VSMCs calcification by alteration of mitochondrial function. This article reviewed the mechanism of calcification and the role of mitochondria in VC, aiming to raise a novel insight into drug development and clinical treatment.
Collapse
|
41
|
Alesutan I, Moritz F, Haider T, Shouxuan S, Gollmann-Tepeköylü C, Holfeld J, Pieske B, Lang F, Eckardt KU, Heinzmann SS, Voelkl J. Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells. J Mol Med (Berl) 2020; 98:985-997. [PMID: 32488546 PMCID: PMC7343738 DOI: 10.1007/s00109-020-01925-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Abstract In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor β-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to β-glycerophosphate. In VSMCs, β-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. β-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. β-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, β-glycerophosphate increased non-glycolytic acidification. β-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated β-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, β-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. Key messages
β-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. β-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. β-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. β-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact β-glycerophosphate-induced VSMC calcification. Electronic supplementary material The online version of this article (10.1007/s00109-020-01925-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany. .,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | - Franco Moritz
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tatjana Haider
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Sun Shouxuan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Can Gollmann-Tepeköylü
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Burkert Pieske
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Tubingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Sophie Heinzmann
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
42
|
The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127:110234. [PMID: 32559855 DOI: 10.1016/j.biopha.2020.110234] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is a natural polyphenol derived from grapes, berries, red wine, peanuts amongst other fruits and nuts. Beneficial effects such as anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, cardioprotective, renoprotective, anti-obesity, anti-diabetic, and anti-cancer of resveratrol have been demonstrated by preclinical and clinical research. A possibility is that these therapeutical effects are associated with modulation of the Nrf2 signaling pathway in the following way: resveratrol may potentiate Nrf2 signaling through blockage of Keap1, by means of changing the Nrf2 mediators, its expression and its nuclear translocation. This article reviews the evidence of the Nrf2 modulating hypothesis as a possible molecular mechanism underlying the medicinal properties of resveratrol.
Collapse
|
43
|
Al Sabaani N. Kaempferol Protects Against Hydrogen Peroxide-Induced Retinal Pigment Epithelium Cell Inflammation and Apoptosis by Activation of SIRT1 and Inhibition of PARP1. J Ocul Pharmacol Ther 2020; 36:563-577. [PMID: 32412821 DOI: 10.1089/jop.2019.0151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: This study investigated the protective effect of Kaempferol against hydrogen peroxides (H2O2)-induced retinal pigment epithelium (RPE) cell oxidative stress, inflammation, and apoptosis and investigated if this protection involves modulation of poly(ADP-ribose) polymerase-1 (PARP1)/silent information regulator 1 (SIRT1) signaling pathway. Methods: ARPE-19 cells were pretreated with increasing doses of Kaempferol (10, 25, 50, 100 μM) for 24 h in Dulbecco's modified Eagle's medium/F-12 medium with or without postincubation with H2O2. Control cells remained untreated. Results: Kaempferol, in a dose-dependent manner, significantly increased cell survival and reduced levels of reactive oxygen species, malondialdehyde, single-stranded DNA (ssDNA), and lactate dehydrogenase but increased levels of glutathione (GSH) and manganese-superoxide dismutase (MnSOD) in H2O2-treated ARPE-19 cells. It also increased GSH and MnSOD in a dose-dependent manner in control + Kaempferol treated cells. At a dose of 50 μM, the most effective dose, Kaempferol also inhibited protein levels of tumor necrosis factor alpha and interleukin-6, nuclear activity and protein levels of total, acetylated, and cleaved PARP1, and increased nuclear levels and activity of SIRT1 in H2O2-treated cells. In parallel, it increased total nuclear levels of Nrf2 but reduced the acetylation of p53, Nrf2, nuclear factor-κB (NF-κB) p65, and forkhead transcriptional factor 1 (FOXO1). Of interest, the stimulatory role of Kaempferol in the nuclear accumulation and activation of SIRT1 and the nuclear levels of Nrf2, as well as in reducing the acetylation of Nrf2, NF-κB p65, and FOXO1, was shown in nuclei of control + Kaempferol-treated cells. Conclusion: Kaempferol protective effect against H2O2-induced ARPE-19 damage involves antioxidant and anti-inflammatory effects mediated, at least, by stimulating the nuclear accumulation, activation, and deacetylase ability of SIRT1 and concurrent inhibition of PARP1.
Collapse
Affiliation(s)
- Nasser Al Sabaani
- Opthalmology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
44
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
45
|
Wang G, Xie X, Yuan L, Qiu J, Duan W, Xu B, Chen X. Resveratrol ameliorates rheumatoid arthritis via activation of SIRT1-Nrf2 signaling pathway. Biofactors 2020; 46:441-453. [PMID: 31883358 DOI: 10.1002/biof.1599] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
The present study was designed to explore the biological role of resveratrol (RES) in rheumatoid arthritis (RA) and the underlying mechanism. The adjuvant-induced arthritic rats were administered RES on the 12th day after model establishment, and then arthritis assessment, oxidative stress measurement, histological examination, and immunohistochemical staining were performed. The primary rat fibroblast-like synoviocytes (FLS) were isolated and treated with RES in vitro and then cell proliferation and apoptosis assay were examined. Chromatin immunoprecipitation assay, luciferase reporter assay, intracellular reactive oxygen species (ROS) determination, western blot, and quantitative real time-polymerase chain reaction (qRT-PCR) were performed to investigate the mechanisms. RES administration decreased arthritis scores and serum levels of antioxidant enzymes, attenuated paw swelling, synovial hyperplasia, inflammatory cell infiltration, and cartilage degradation, as well as inhibited synoviocyte proliferation in synovial tissues. Further investigation indicated that RES inhibited ROS production and FLS proliferation through activating the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. NF-κB was confirmed to negatively regulate miR-29a-3p and miR-23a-3p expression by directly binding to its promoter. Mechanistic analyses further revealed that Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1), a negative regulator of Nrf2, was a downstream target of miR-29a-3p, while miR-23a-3p directly targeted cullin3 (cul3), a master regulator of ubiquitination and degradation of Nrf2. Together, the present study provided evidence that RES ameliorated RA through activation of Nrf2-ARE signaling pathway via SIRT1/NF-κB/miR-29a-3p/Keap1 and SIRT1/NF-κB/miR-23a-3p/cul3 signaling pathway.
Collapse
Affiliation(s)
- Gaoyuan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinxin Xie
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingli Yuan
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jie Qiu
- Endoscopy Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenchao Duan
- Endoscopy Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| |
Collapse
|
46
|
De Maré A, D’Haese PC, Verhulst A. The Role of Sclerostin in Bone and Ectopic Calcification. Int J Mol Sci 2020; 21:ijms21093199. [PMID: 32366042 PMCID: PMC7246472 DOI: 10.3390/ijms21093199] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sclerostin, a 22-kDa glycoprotein that is mainly secreted by the osteocytes, is a soluble inhibitor of canonical Wnt signaling. Therefore, when present at increased concentrations, it leads to an increased bone resorption and decreased bone formation. Serum sclerostin levels are known to be increased in the elderly and in patients with chronic kidney disease. In these patient populations, there is a high incidence of ectopic cardiovascular calcification. These calcifications are strongly associated with cardiovascular morbidity and mortality. Although data are still controversial, it is likely that there is a link between ectopic calcification and serum sclerostin levels. The main question, however, remains whether sclerostin exerts either a protective or deleterious role in the ectopic calcification process.
Collapse
|
47
|
Lee SJ, Lee IK, Jeon JH. Vascular Calcification-New Insights Into Its Mechanism. Int J Mol Sci 2020; 21:ijms21082685. [PMID: 32294899 PMCID: PMC7216228 DOI: 10.3390/ijms21082685] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC), which is categorized by intimal and medial calcification, depending on the site(s) involved within the vessel, is closely related to cardiovascular disease. Specifically, medial calcification is prevalent in certain medical situations, including chronic kidney disease and diabetes. The past few decades have seen extensive research into VC, revealing that the mechanism of VC is not merely a consequence of a high-phosphorous and -calcium milieu, but also occurs via delicate and well-organized biologic processes, including an imbalance between osteochondrogenic signaling and anticalcific events. In addition to traditionally established osteogenic signaling, dysfunctional calcium homeostasis is prerequisite in the development of VC. Moreover, loss of defensive mechanisms, by microorganelle dysfunction, including hyper-fragmented mitochondria, mitochondrial oxidative stress, defective autophagy or mitophagy, and endoplasmic reticulum (ER) stress, may all contribute to VC. To facilitate the understanding of vascular calcification, across any number of bioscientific disciplines, we provide this review of a detailed updated molecular mechanism of VC. This encompasses a vascular smooth muscle phenotypic of osteogenic differentiation, and multiple signaling pathways of VC induction, including the roles of inflammation and cellular microorganelle genesis.
Collapse
Affiliation(s)
- Sun Joo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea;
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-(53)-200-3182; Fax: +82-(53)-200-3155
| |
Collapse
|
48
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
49
|
Dai L, Schurgers LJ, Shiels PG, Stenvinkel P. Early vascular ageing in chronic kidney disease: impact of inflammation, vitamin K, senescence and genomic damage. Nephrol Dial Transplant 2020; 35:ii31-ii37. [PMID: 32162665 PMCID: PMC7066546 DOI: 10.1093/ndt/gfaa006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a clinical model of premature ageing characterized by cardiovascular disease, persistent uraemic inflammation, osteoporosis muscle wasting and frailty. The accelerated early vascular ageing (EVA) process mediated by medial vascular calcification (VC) is a hallmark of senescence as well as a strong predictor of cardiovascular morbidity and mortality in the CKD population. Current clinical therapeutic strategies and novel treatments for VC have not yet been proven to prevent or reverse VC progression in patients with CKD. Knowledge of the fundamental mechanism underlying EVA is urgently needed to identify and develop novel and efficient therapeutic targets for VC and EVA. An accumulating body of evidence indicates that deoxyribonucleic acid (DNA) damage-induced cellular senescence and 'inflammaging' may largely contribute to such pathological conditions characterized by accelerated EVA. Growing evidence shows that nuclear factor erythroid 2-related factor 2 (NRF2) signalling and vitamin K play a crucial role in counteracting oxidative stress, DNA damage, senescence and inflammaging, whereby NRF2 activation and vitamin K supplementation may provide a novel treatment target for EVA. In this review we discuss the link between senescence and EVA in the context of CKD, with a focus on the role of NRF2 and vitamin K in DNA damage signalling, senescence and inflammaging.
Collapse
Affiliation(s)
- Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research School Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Arefin S, Buchanan S, Hobson S, Steinmetz J, Alsalhi S, Shiels PG, Kublickiene K, Stenvinkel P. Nrf2 in early vascular ageing: Calcification, senescence and therapy. Clin Chim Acta 2020; 505:108-118. [PMID: 32097628 DOI: 10.1016/j.cca.2020.02.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
Under normal physiological conditions, free radical generation and antioxidant defences are balanced, and reactive oxygen species (ROS) usually act as secondary messengers in a plethora of biological processes. However, when this balance is impaired, oxidative stress develops due to imbalanced redox homeostasis resulting in cellular damage. Oxidative stress is now recognized as a trigger of cellular senescence, which is associated with multiple chronic 'burden of lifestyle' diseases, including atherosclerosis, type-2 diabetes, chronic kidney disease and vascular calcification; all of which possess signs of early vascular ageing. Nuclear factor erythroid 2-related factor 2 (Nrf2), termed the master regulator of antioxidant responses, is a transcription factor found to be frequently dysregulated in conditions characterized by oxidative stress and inflammation. Recent evidence suggests that activation of Nrf2 may be beneficial in protecting against vascular senescence and calcification. Both natural and synthetic Nrf2 agonists have been introduced as promising drug classes in different phases of clinical trials. However, overexpression of the Nrf2 pathway has also been linked to tumorigenesis, which highlights the requirement for further understanding of pathways involving Nrf2 activity, especially in the context of cellular senescence and vascular calcification. Therefore, comprehensive translational pre-clinical and clinical studies addressing the targeting capabilities of Nrf2 agonists are urgently required. The present review discusses the impact of Nrf2 in senescence and calcification in early vascular ageing, with focus on the potential clinical implications of Nrf2 agonists and non-pharmacological Nrf2 therapeutics.
Collapse
Affiliation(s)
- Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Sarah Buchanan
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Julia Steinmetz
- Rheumatology Unit, Dep. of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Shno Alsalhi
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden; Research Center, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region, Iraq
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden.
| |
Collapse
|