1
|
Dardiotis E, Kyriakides T. Drug and Gene Therapy for Treating Variant Transthyretin Amyloidosis (ATTRv) Neuropathy. Curr Neuropharmacol 2023; 21:471-481. [PMID: 36366846 PMCID: PMC10207904 DOI: 10.2174/1570159x21666221108094736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Variant Transthyretin Amyloidosis (ATTRv) neuropathy is an adult-onset, autosomal dominant, lethal, multisystemic disease due to the deposition of mutated transthyretin (TTR) in various organs, commonly involving the peripheral nerves and the heart. Circulating TTR tetramers are unstable due to the presence of mutated TTR and dissociate into monomers, which misfold and form amyloid fibrils. Although there are more than 140 mutations in the TTR gene, the p.Val50Met mutation is by far the commonest. In the typical, early-onset cases, it presents with a small sensory fibre and autonomic, length-dependent, axonal neuropathy, while in late-onset cases, it presents with a lengthdependent sensorimotor axonal neuropathy involving all fibre sizes. Treatment is now available and includes TTR stabilizers, TTR amyloid removal as well as gene silencing, while gene editing therapies are on the way. Its timely diagnosis is of paramount importance for a better prognosis.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, School of Health Sciences, Faculty of Medicine, University Hospital of Larissa, Larissa, Greece
| | - Theodoros Kyriakides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
2
|
Tzagournissakis M, Foukarakis E, Samonakis D, Tsilimbaris M, Michaelidou K, Mathioudakis L, Marinis A, Giannakoudakis E, Spanaki C, Skoula I, Erimaki S, Amoiridis G, Koutsis G, Koukouraki S, Stylianou K, Plaitakis A, Mitsias PD, Zaganas I. High Hereditary Transthyretin-Related Amyloidosis Prevalence in Crete. Neurol Genet 2022; 8:e200013. [PMID: 36101541 PMCID: PMC9465837 DOI: 10.1212/nxg.0000000000200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022]
Abstract
Background and Objectives Our goal was to study hereditary transthyretin-related amyloidosis (hATTR) in Crete, Greece. Methods We aimed at ascertaining all hATTR cases in Crete, an island of 0.62 million people. For this, we evaluated patients with polyneuropathy, autonomic involvement, cardiomyopathy, and/or ophthalmopathy suggestive of hATTR, who presented to the physicians of this study or were referred to them by other physicians. Genetic analyses were performed on all patients suspected of suffering from hATTR. We included in our observational longitudinal cohort study all individuals, residents of Crete, who, during the study period (1993–2019), were found to carry a pathogenic TTR variant. Results Over the past 27 years, 30 individuals (15 female patients, 15 male patients), from 12 apparently unrelated families, were diagnosed with hATTR, whereas evaluation of their offspring identified 5 asymptomatic TTR pathogenic variant carriers. The most prevalent TTR variant detected was p.Val50Met, affecting 19 patients (11 female patients, 8 male patients) and causing a rather consistent phenotype characterized by predominant polyneuropathy of early adult onset (median age of symptom onset: 30 years; range: 18–37 years). Specifically, patients affected by the p.Val50Met TTR variant experienced progressive sensorimotor disturbances, involving mainly the lower extremities, associated with autonomic and/or gastrointestinal dysfunction. The second most frequent TTR variant was p.Val114Ala, found in 10 patients (4 female patients, 6 male patients) who were affected at an older age (median age of symptom onset: 70 years; range: 54–78 years). This variant caused a predominantly cardiomyopathic phenotype, manifested by congestive heart failure and associated with peripheral neuropathy, carpal tunnel syndrome, and/or autonomic involvement. In these patients, cardiac amyloid deposition was detected on 99m-technetium pyrophosphate scintigraphy and/or heart biopsy. The third TTR variant (p.Arg54Gly) was found in a 50-year-old male patient with ophthalmopathy due to vitreous opacities and positive family history for visual loss. As 22 patients were alive at the end of the study, we calculated the hATTR prevalence in Crete to be 35 cases per 1 million inhabitants. Discussion Our study revealed that the prevalence of hATTR in Crete is one of the world's highest. Three different pathogenic TTR variants causing distinct clinical phenotypes were identified in this relatively small population pool.
Collapse
|
3
|
Koutsis G, Kastritis E, Kontogeorgiou Z, Kartanou C, Kokotis P, Rentzos M, Breza M, Kleopa KA, Christodoulou K, Oikonomou E, Anastasakis A, Angelidakis P, Sarmas I, Kargiotis O, Tzagournissakis M, Zaganas I, Foukarakis E, Sachpekidis V, Papathoma A, Panas M, Stefanis L, Dimopoulos MA, Karadima G. Variant transthyretin amyloidosis (ATTRv) polyneuropathy in Greece: a broad overview with a focus on non-endemic unexplored regions of the country. Neuromuscul Disord 2021; 31:1251-1258. [PMID: 34740514 DOI: 10.1016/j.nmd.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Comprehensive data on variant transthyretin amyloidosis polyneuropathy (ATTRv-PN) in Greece are lacking. We presently provide an overview of ATTRv-PN in Greece, focusing on unexplored non-endemic regions of the country. In total, we identified 57 cases of ATTRv-PN diagnosed over the past 25 years, including 30 from the island of Crete, an apparent endemic region. Patients carried 10 different TTR mutations (C10R; P24S; V30M; R34G; R34T; I68L; A81T; E89Q; E89K and V94A). Carriers of the common V30M mutation constituted 54.3 % of the cohort. A known founder effect for the V30M mutation was present on the island of Crete. Non-endemic cases identified outside the island of Crete are presently reported in more detail. The age of onset ranged from 25 to 77 years, with a mean of 51.1 years. A mean diagnostic delay of 3.2 years was observed. V30M patients had earlier onset and less cardiac involvement than patients carrying other mutations. Genotype-phenotype correlations were largely consistent with published data. We conclude that, with the exception of the Cretan cluster, ATTRv-PN is not endemic in the Greek population. This makes timely diagnosis more challenging, yet absolutely essential given the availability of therapies that can alter the long-term course of the disease.
Collapse
Affiliation(s)
- Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, Athens, Greece;.
| | - Efstathios Kastritis
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Zoi Kontogeorgiou
- Neurogenetics Unit, 1st Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Kokotis
- 1st Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- 1st Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianthi Breza
- Neurogenetics Unit, 1st Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleopas A Kleopa
- Department of Neuroscience and Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Evangelos Oikonomou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Centre, Athens, Greece
| | | | - Ioannis Sarmas
- Neurosurgical Institute, University of Ioannina School of Medicine, Ioannina, Greece; Department of Neurology, University Hospital of Ioannina, Ioannina, Greece
| | | | | | - Ioannis Zaganas
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Emmanouil Foukarakis
- Department of Cardiology, "Venizeleio" General Hospital of Heraklion, Heraklion, Crete, Greece
| | | | | | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Yu J, Xiang X, Huang J, Liang X, Pan X, Dong Z, Petersen TS, Qu K, Yang L, Zhao X, Li S, Zheng T, Xu Z, Liu C, Han P, Xu F, Yang H, Liu X, Zhang X, Bolund L, Luo Y, Lin L. Haplotyping by CRISPR-mediated DNA circularization (CRISPR-hapC) broadens allele-specific gene editing. Nucleic Acids Res 2020; 48:e25. [PMID: 31943080 PMCID: PMC7049710 DOI: 10.1093/nar/gkz1233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Allele-specific protospacer adjacent motif (asPAM)-positioning SNPs and CRISPRs are valuable resources for gene therapy of dominant disorders. However, one technical hurdle is to identify the haplotype comprising the disease-causing allele and the distal asPAM SNPs. Here, we describe a novel CRISPR-based method (CRISPR-hapC) for haplotyping. Based on the generation (with a pair of CRISPRs) of extrachromosomal circular DNA in cells, the CRISPR-hapC can map haplotypes from a few hundred bases to over 200 Mb. To streamline and demonstrate the applicability of the CRISPR-hapC and asPAM CRISPR for allele-specific gene editing, we reanalyzed the 1000 human pan-genome and generated a high frequency asPAM SNP and CRISPR database (www.crispratlas.com/knockout) for four CRISPR systems (SaCas9, SpCas9, xCas9 and Cas12a). Using the huntingtin (HTT) CAG expansion and transthyretin (TTR) exon 2 mutation as examples, we showed that the asPAM CRISPRs can specifically discriminate active and dead PAMs for all 23 loci tested. Combination of the CRISPR-hapC and asPAM CRISPRs further demonstrated the capability for achieving highly accurate and haplotype-specific deletion of the HTT CAG expansion allele and TTR exon 2 mutation in human cells. Taken together, our study provides a new approach and an important resource for genome research and allele-specific (haplotype-specific) gene therapy.
Collapse
Affiliation(s)
- Jiaying Yu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Xi Xiang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Jinrong Huang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Zhanying Dong
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | | | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Ling Yang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoying Zhao
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Siyuan Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Tianyu Zheng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Zhe Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Chengxun Liu
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| |
Collapse
|