1
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
2
|
den Heijer JM, Kruithof AC, Moerland M, Walker M, Dudgeon L, Justman C, Solomini I, Splitalny L, Leymarie N, Khatri K, Cullen VC, Hilt DC, Groeneveld GJ, Lansbury P. A Phase 1B Trial in GBA1-Associated Parkinson's Disease of BIA-28-6156, a Glucocerebrosidase Activator. Mov Disord 2023. [PMID: 37195859 DOI: 10.1002/mds.29346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Loss-of-function mutations in the GBA1 gene are one of the most common genetic risk factors for onset of Parkinson's disease and subsequent progression (GBA-PD). GBA1 encodes the lysosomal enzyme glucocerebrosidase (GCase), a promising target for a possible first disease-modifying therapy. LTI-291 is an allosteric activator of GCase, which increases the activity of normal and mutant forms of GCase. OBJECTIVES This first-in-patient study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of 28 daily doses of LTI-291 in GBA-PD. METHODS This was a randomized, double-blind, placebo-controlled trial in 40 GBA-PD participants. Twenty-eight consecutive daily doses of 10, 30, or 60 mg of LTI-291 or placebo were administered (n = 10 per treatment allocation). Glycosphingolipid (glucosylceramide and lactosylceramide) levels were measured in peripheral blood mononuclear cells (PBMCs), plasma, and cerebrospinal fluid (CSF), and a test battery of neurocognitive tasks, the Movement Disorder Society-Unified Parkinson's Disease Rating Scale and the Mini-Mental State Exam, were performed. RESULTS LTI-291 was generally well tolerated, no deaths or treatment-related serious adverse events occurred, and no participants withdrew due to adverse events. Cmax , and AUC0-6 of LTI-291 increased in a dose-proportional manner, with free CSF concentrations equal to the free fraction in plasma. A treatment-related transient increase in intracellular glucosylceramide (GluCer) in PBMCs was measured. CONCLUSION These first-in-patient studies demonstrated that LTI-291 was well tolerated when administered orally for 28 consecutive days to patients with GBA-PD. Plasma and CSF concentrations that are considered pharmacologically active were reached (ie, sufficient to at least double GCase activity). Intracellular GluCer elevations were detected. Clinical benefit will be assessed in a larger long-term trial in GBA-PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jonas M den Heijer
- Department of Neurology, Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Annelieke C Kruithof
- Department of Neurology, Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Matthijs Moerland
- Department of Neurology, Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | - Craig Justman
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | | | | | - Nancy Leymarie
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Kshitij Khatri
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | | | - Dana C Hilt
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Geert Jan Groeneveld
- Department of Neurology, Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Gregory S, Saunders S, Ritchie CW. Science disconnected: the translational gap between basic science, clinical trials, and patient care in Alzheimer's disease. THE LANCET. HEALTHY LONGEVITY 2022; 3:e797-e803. [PMID: 36356629 DOI: 10.1016/s2666-7568(22)00219-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Both research and clinical practice have traditionally centred on the dementia syndrome of Alzheimer's disease rather than its preclinical and prodromal stages. However, there is a strong scientific and ethical impetus to shift focus to earlier disease stages to improve brain health outcomes and help to keep affected individuals symptom-free (dementia-free) for as long as possible. We provide an overview of recent advancements in early detection, drug development, and trial methodology that should be utilised in the development of new therapies for use in brain health clinics. We propose a triad approach to Alzheimer's disease clinical trials, encompassing (1) experimental medicine studies to gather greater knowledge of disease mechanisms, (2) a more comprehensive platform of phase 2 learning trials to inform phase 3 confirmatory trials, and (3) precision medicine involving smaller subgroups of patients with shared characteristics. This triad would ensure that treatment targets are identified accurately, trial methodology focuses on at-risk populations, and sensitive outcome measures capture potential treatment effects. Clinical services around the world must embrace the brain health clinic model so that neurodegenerative diseases can be detected in their earliest phase to quicken drug development pipelines and potentially improve prognosis.
Collapse
Affiliation(s)
- Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatient Department 2, Western General Hospital, University of Edinburgh, Edinburgh, UK.
| | - Stina Saunders
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatient Department 2, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatient Department 2, Western General Hospital, University of Edinburgh, Edinburgh, UK; Brain Health Scotland, Edinburgh, UK
| |
Collapse
|
4
|
Blokland A. Cholinergic models of memory impairment in animals and man: scopolamine vs. biperiden. Behav Pharmacol 2022; 33:231-237. [PMID: 35621168 DOI: 10.1097/fbp.0000000000000670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Scopolamine has been used as a pharmacologic model for cognitive impairments in dementia and Alzheimer's disease. The validity of this model seems to be limited because findings in animals do not readily translate to novel treatments in humans. Biperiden is also a cholinergic deficit model for cognitive impairments but specifically blocks muscarinic M1 receptors. The effects of scopolamine and biperiden (and pirenzepine) are compared in animal studies and related to findings in humans. It is concluded that the effects on cognitive functions are different for scopolamine and biperiden, and they should be considered as different cognitive deficit models. Scopolamine may model more advanced stages of Alzheimer's disease whereas biperiden may model the early deficits in declarative memory in aging and mild cognitive impairment.
Collapse
Affiliation(s)
- Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Liu Y, Zhang X, Lin W, Kehriman N, Kuang W, Ling X. Multi-factor combined biomarker screening strategy to rapidly diagnose Alzheimer’s disease and evaluate drug effect based on a rat model. J Pharm Anal 2022; 12:627-636. [PMID: 36105160 PMCID: PMC9463486 DOI: 10.1016/j.jpha.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) represents the main form of dementia; however, valid diagnosis and treatment measures are lacking. The discovery of valuable biomarkers through omics technologies can help solve this problem. For this reason, metabolomic analysis using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS) was carried out on plasma, hippocampus, and cortex samples of an AD rat model. Based on the metabolomic data, we report a multi-factor combined biomarker screening strategy to rapidly and accurately identify potential biomarkers. Compared with the usual procedure, our strategy can identify fewer biomarkers with higher diagnostic specificity and sensitivity. In addition to diagnosis, the potential biomarkers identified using our strategy were also beneficial for drug evaluation. Multi-factor combined biomarker screening strategy was used to identify differential metabolites from a rat model of amyloid beta peptide 1–40 (Aβ1−40) plus ibotenic acid-induced AD (compared with the controls) for the first time; lysophosphatidylcholine (LysoPC) and intermediates of sphingolipid metabolism were screened as potential biomarkers. Subsequently, the effects of donepezil and pine nut were successfully reflected by regulating the levels of the abovementioned biomarkers and metabolic profile distribution in partial least squares-discriminant analysis (PLS-DA). This novel biomarker screening strategy can be used to analyze other metabolomic data to simultaneously enable disease diagnosis and drug evaluation. Multi-factor combined biomarker screening strategy is a novel and rapid metabolomic data processing strategy. The most discriminating biomarkers for AD diagnosis can simultaneously reflect drug effects. Multi-factor biomarker screening strategy is ready for use without a priori knowledge.
Collapse
|
6
|
den Heijer JM, Kruithof AC, van Amerongen G, de Kam ML, Thijssen E, Grievink HW, Moerland M, Walker M, Been K, Skerlj R, Justman C, Dudgeon L, Lansbury P, Cullen VC, Hilt DC, Groeneveld GJ. A randomized single and multiple ascending dose study in healthy volunteers of LTI-291, a centrally penetrant glucocerebrosidase activator. Br J Clin Pharmacol 2021; 87:3561-3573. [PMID: 33576113 PMCID: PMC8451761 DOI: 10.1111/bcp.14772] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/02/2023] Open
Abstract
AIMS A mutation in the GBA1 gene is the most common genetic risk factor for developing Parkinson's disease. GBA1 encodes the lysosomal enzyme glucosylceramidase beta (glucocerebrosidase, GCase) and mutations decrease enzyme activity. LTI-291 is an allosteric modulator of GCase, enhancing its activity. These first-in-human studies evaluated the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple ascending doses of LTI-291 in healthy volunteers. METHODS In the single ascending dose (SAD) study, 40 healthy volunteers were randomly assigned to LTI-291 (n = 8 per dose level) or placebo (n = 2 per dose level). Single doses of 3, 10, 30 and 90 mg LTI-291 were investigated. In the multiple ascending dose (MAD) study, 40 healthy middle-aged or elderly volunteers were randomly assigned to LTI-291 (n = 8 per dose level) or placebo (n = 2 per dose level). Fourteen consecutive daily doses of 3, 10, 30 and 60 mg LTI-291 or placebo were administered. In both the SAD and MAD studies, glycosphingolipid levels were measured and a test battery of neurocognitive tasks was performed. RESULTS LTI-291 was generally well tolerated and no deaths or treatment-related SAEs occurred and no subject withdrew from a study due to AEs. Cmax , AUC0-24 and AUC0-inf increased in a dose proportional manner. The median half-life was 28.0 hours after multiple dosing. No dose-dependent glycosphingolipid changes occurred. No neurocognitive adverse effects were detected. CONCLUSIONS These first-in-human studies demonstrated that LTI-291 was well tolerated when given orally once daily for 14 consecutive days. This supports the continued clinical development and the exploration of LTI-291 effects in a GBA1-mutated Parkinson population.
Collapse
Affiliation(s)
- Jonas M den Heijer
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | - Annelieke C Kruithof
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | - Guido van Amerongen
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Eva Thijssen
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Kees Been
- Lysosomal Therapeutics Inc., Cambridge, MA, USA
| | | | | | | | - Peter Lansbury
- Lysosomal Therapeutics Inc., Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Dana C Hilt
- Lysosomal Therapeutics Inc., Cambridge, MA, USA
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
7
|
Potasiewicz A, Krawczyk M, Gzielo K, Popik P, Nikiforuk A. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors enhance procognitive effects of conventional anti-Alzheimer drugs in scopolamine-treated rats. Behav Brain Res 2020; 385:112547. [DOI: 10.1016/j.bbr.2020.112547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/13/2023]
|