1
|
Yassine HN, Self W, Kerman BE, Santoni G, Navalpur Shanmugam N, Abdullah L, Golden LR, Fonteh AN, Harrington MG, Gräff J, Gibson GE, Kalaria R, Luchsinger JA, Feldman HH, Swerdlow RH, Johnson LA, Albensi BC, Zlokovic BV, Tanzi R, Cunnane S, Samieri C, Scarmeas N, Bowman GL. Nutritional metabolism and cerebral bioenergetics in Alzheimer's disease and related dementias. Alzheimers Dement 2023; 19:1041-1066. [PMID: 36479795 PMCID: PMC10576546 DOI: 10.1002/alz.12845] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
| | - Giulia Santoni
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - NandaKumar Navalpur Shanmugam
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alfred N Fonteh
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Huntington Medical Research Institutes, Pasadena, California, USA
| | - Michael G Harrington
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Neurological Institute, White Plains, New York, USA
| | - Raj Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jose A Luchsinger
- Department of Medicine and Epidemiology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Howard H Feldman
- Department of Neurosciences, University of California, San Diego, California, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Benedict C Albensi
- Nova Southeastern Univ. College of Pharmacy, Davie, Florida, USA
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rudolph Tanzi
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Cécilia Samieri
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Gene L Bowman
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| |
Collapse
|
2
|
Abstract
BACKGROUND Souvenaid is a dietary supplement with a patented composition (Fortasyn Connect™)which is intended to be used by people with Alzheimer's disease (AD). It has been designed to support the formation and function of synapses in the brain, which are thought to be strongly correlated with cognitive function. If effective, it might improve symptoms of Alzheimer's disease and also prevent the progression from prodromal Alzheimer's disease to dementia. We sought in this review to examine the evidence for this proposition. OBJECTIVES To assess the effects of Souvenaid on incidence of dementia, cognition, functional performance, and safety in people with Alzheimer's disease. SEARCH METHODS We searched ALOIS, i.e. the specialised register of the Cochrane Dementia and Cognitive Improvement Group, MEDLINE (Ovid SP), Embase (Ovid SP), PsycINFO (Ovid SP), Web of Science (ISI Web of Science), Cinahl (EBSCOhost), Lilacs (BIREME), and clinical trials registries up to 24 June 2020. We also reviewed citations of reference lists of landmark papers, reviews, and included studies for additional studies and assessed their suitability for inclusion in the review. SELECTION CRITERIA We included randomised, placebo-controlled trials which evaluated Souvenaid in people diagnosed with mild cognitive impairment (MCI) due to AD (also termed prodromal AD) or with dementia due to AD, and with a treatment duration of at least 16 weeks. DATA COLLECTION AND ANALYSIS Our primary outcome measures were incidence of dementia, global and specific cognitive function, functional performance, combined cognitive-functional outcomes and adverse events. We selected studies, extracted data, assessed the quality of trials and intended to conduct meta-analyses according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the quality of the evidence using the GRADE approach. We present all outcomes grouped by stage of AD. MAIN RESULTS We included three randomised, placebo-controlled trials investigating Souvenaid in 1097 community-dwelling participants with Alzheimer's disease. One study each included participants with prodromal AD, mild AD dementia and mild-to-moderate AD dementia. We rated the risks of bias of all trials as low. One study (in prodromal AD) was funded by European grants. The other two studies were funded by the manufacturer of Souvenaid. One trial investigated the incidence of dementia in people with prodromal AD at baseline, and found little to no difference between the Souvenaid group and the placebo group after 24 months (RR 1.09, 95% CI 0.82 to 1.43; 1 trial, 311 participants; moderate quality of evidence). In prodromal AD, and in mild and mild-to-moderate Alzheimer's disease dementia, Souvenaid probably results in little or no difference in global or specific cognitive functions (moderate quality of evidence). Everyday function, or the ability to perform activities of daily living, were measured in mild and mild-to-moderate AD dementia. Neither study found evidence of a difference between the groups after 24 weeks of treatment (moderate quality of evidence). Two studies investigated combined cognitive-functional outcomes with the Clinical Dementia Rating Sum of Boxes and observed conflicting results. Souvenaid probably results in slight improvement, which is below estimates of meaningful change, in participants with prodromal Alzheimer's disease after 24 months (moderate quality of evidence), but probably has little to no effect in mild-to-moderate Alzheimer's disease dementia after 24 weeks (moderate quality of evidence). Adverse effects observed were low in all trials, and the available data were insufficient to determine any connection with Souvenaid. AUTHORS' CONCLUSIONS Two years of treatment with Souvenaid probably does not reduce the risk of progression to dementia in people with prodromal AD. There is no convincing evidence that Souvenaid affects other outcomes important to people with AD in the prodromal stage or mild-to-moderate stages of dementia. Conflicting evidence on combined cognitive-functional outcomes in prodromal AD and mild AD dementia warrants further investigation. Adverse effects of Souvenaid seem to be uncommon, but the evidence synthesised in this review does not permit us to make a definitive statement on the long-term tolerability of Souvenaid. The effects of Souvenaid in more severe AD dementia or in people with AD at risk of nutritional deficiencies remain unclear.
Collapse
Affiliation(s)
| | - Stefan Watzke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gero Langer
- Institute of Health and Nursing Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Astrid Fink
- Institute for Medical Sociology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Nieraad H, de Bruin N, Arne O, Hofmann MCJ, Schmidt M, Saito T, Saido TC, Gurke R, Schmidt D, Till U, Parnham MJ, Geisslinger G. Impact of Hyperhomocysteinemia and Different Dietary Interventions on Cognitive Performance in a Knock-in Mouse Model for Alzheimer's Disease. Nutrients 2020; 12:nu12113248. [PMID: 33114054 PMCID: PMC7690745 DOI: 10.3390/nu12113248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hyperhomocysteinemia is considered a possible contributor to the complex pathology of Alzheimer's disease (AD). For years, researchers in this field have discussed the apparent detrimental effects of the endogenous amino acid homocysteine in the brain. In this study, the roles of hyperhomocysteinemia driven by vitamin B deficiency, as well as potentially beneficial dietary interventions, were investigated in the novel AppNL-G-F knock-in mouse model for AD, simulating an early stage of the disease. METHODS Urine and serum samples were analyzed using a validated LC-MS/MS method and the impact of different experimental diets on cognitive performance was studied in a comprehensive behavioral test battery. Finally, we analyzed brain samples immunohistochemically in order to assess amyloid-β (Aβ) plaque deposition. RESULTS Behavioral testing data indicated subtle cognitive deficits in AppNL-G-F compared to C57BL/6J wild type mice. Elevation of homocysteine and homocysteic acid, as well as counteracting dietary interventions, mostly did not result in significant effects on learning and memory performance, nor in a modified Aβ plaque deposition in 35-week-old AppNL-G-F mice. CONCLUSION Despite prominent Aβ plaque deposition, the AppNL-G-F model merely displays a very mild AD-like phenotype at the investigated age. Older AppNL-G-F mice should be tested in order to further investigate potential effects of hyperhomocysteinemia and dietary interventions.
Collapse
Affiliation(s)
- Hendrik Nieraad
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
- Correspondence:
| | - Natasja de Bruin
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Olga Arne
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Martine C. J. Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Mike Schmidt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
| | - Robert Gurke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dominik Schmidt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Uwe Till
- Former Institute of Pathobiochemistry, Friedrich-Schiller-University Jena, Nonnenplan 2, 07743 Jena, Germany;
| | - Michael J. Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|