Zhang Z, Zhou X, Zhou X, Cheng Z, Hu Y. Exploration of treatment-free remission in CML, based on molecular monitoring.
Cancer Med 2024;
13:e6849. [PMID:
38133525 PMCID:
PMC10807643 DOI:
10.1002/cam4.6849]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND
Typical chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm caused by t(9; 22)(q34; q11) translocation. This chromosomal translocation forms the BCR::ABL1 fusion gene. The tyrosine kinase encoded by the BCR::ABL1 is considered to be the main pathogenic diver. BCR::ABL1 is not only a therapeutic target, but also a monitoring target. Monitoring of BCR::ABL1 reveals the progression of the disease and guides the next treatment. Now for CML, the target of treatment has been focused on treatment-free remission (TFR).
METHODS
We conducted a literature review of current developments of treatment-free remission and molecular monitoring methods.
RESULTS
More effective and sensitive CML monitoring methods such as digital droplet PCR (ddPCR) and next generation sequencing (NGS) have further studied the measurable residual disease (MRD) and clonal heterogeneity, which provides strong support for the exploration of TFR. We discussed some of the factors that may be related to TFR outcomes at the molecular level, along with some monitoring strategies.
CONCLUSION
Currently, predictive indicators for treatment-free remission outcomes and recurrence are lacking in clinical practice. In future, treatment-free remission research should focus on combining the clinical indicators with molecular monitoring and biological markers to personalize patient conditions and guide clinicians to develop individualized treatment plans, so that more patients with CML can achieve safer and stabler treatment-free remission.
Collapse