1
|
Han R, Wang Y, Lu L. Sensitizing the Efficiency of ICIs by Neoantigen mRNA Vaccines for HCC Treatment. Pharmaceutics 2023; 16:59. [PMID: 38258070 PMCID: PMC10821464 DOI: 10.3390/pharmaceutics16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
This study builds upon the groundbreaking mRNA vaccine Nobel Prize win in 2023 for COVID-19 prevention, paving the way for next-generation mRNA cancer vaccines to revolutionize immunotherapy. Despite the existing challenges, such as the presence of a suppressive tumor microenvironment and the identification of cancer-associated antigens, recent results from the KEYNOTE-942 trial have successfully demonstrated the effectiveness of mRNA-based cancer treatments, providing clinical evidence for the first time. This trial aimed to evaluate the efficacy and safety of combining immune checkpoint inhibitors with mRNA-based therapies in treating cancer. This advancement undeniably represents new hope for hepatocellular carcinoma (HCC) patients. However, progress in this field remains limited. In this article, we summarized the current state of applying immune checkpoint inhibitors (ICIs) combined with neoantigen mRNA vaccines. Additionally, we discussed potential targets for designing novel mRNA vaccines and potential mRNA vaccine delivery vehicles. The objective of this article is to inspire enthusiasm for the exploration of innovative therapeutic strategies that combine ICIs with neoantigen mRNA vaccines for HCC treatment and HCC prevention.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
| | - Yuqian Wang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
- School of Medicine, Center for Biomedical Data Science, New Haven, CT 06520-8034, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA
| |
Collapse
|
2
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 226] [Impact Index Per Article: 226.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
3
|
Malaina I, Martínez L, Montoya JM, Alonso S, Boyano MD, Asumendi A, Izu R, Sanchez-Diez A, Cancho-Galan G, M. de la Fuente I. A Universal Antigen-Ranking Method to Design Personalized Vaccines Targeting Neoantigens against Melanoma. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010155. [PMID: 36676104 PMCID: PMC9867041 DOI: 10.3390/life13010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Background: The main purpose of this article is to introduce a universal mathematics-aided vaccine design method against malignant melanoma based on neoantigens. The universal method can be adapted to the mutanome of each patient so that a specific candidate vaccine can be tailored for the corresponding patient. Methods: We extracted the 1134 most frequent mutations in melanoma, and we associated each of them to a vector with 10 components estimated with different bioinformatics tools, for which we found an aggregated value according to a set of weights, and then we ordered them in decreasing order of the scores. Results: We prepared a universal table of the most frequent mutations in melanoma ordered in decreasing order of viability to be used as candidate vaccines, so that the selection of a set of appropriate peptides for each particular patient can be easily and quickly implemented according to their specific mutanome and transcription profile. Conclusions: We have shown that the techniques that are commonly used for the design of personalized anti-tumor vaccines against malignant melanoma can be adapted for the design of universal rankings of neoantigens that originate personalized vaccines when the mutanome and transcription profile of specific patients is considered, with the consequent savings in time and money, shortening the design and production time.
Collapse
Affiliation(s)
- Iker Malaina
- Department of Mathematics, University of the Basque Country UPV/EHU, 48940 Bizkaia, Spain
- Correspondence:
| | - Luis Martínez
- Department of Mathematics, University of the Basque Country UPV/EHU, 48940 Bizkaia, Spain
| | - Juan Manuel Montoya
- Department of Mathematics, University of the Basque Country UPV/EHU, 48940 Bizkaia, Spain
- Faculty of Basic Sciences, University of Pamplona, Pamplona 6800, Colombia
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bizkaia, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Bizkaia, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Bizkaia, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Bizkaia, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Bizkaia, Spain
| | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, 48903 Bizkaia, Spain
- Department of Dermatology, Basurto University Hospital, 48013 Bizkaia, Spain
| | - Ana Sanchez-Diez
- Biocruces Bizkaia Health Research Institute, 48903 Bizkaia, Spain
- Department of Dermatology, Basurto University Hospital, 48013 Bizkaia, Spain
| | - Goikoane Cancho-Galan
- Biocruces Bizkaia Health Research Institute, 48903 Bizkaia, Spain
- Department of Pathology, Basurto University Hospital, 48013 Bizkaia, Spain
| | - Ildefonso M. de la Fuente
- Department of Mathematics, University of the Basque Country UPV/EHU, 48940 Bizkaia, Spain
- CEBAS-CSIC Institute, Department of Nutrition, 30100 Murcia, Spain
| |
Collapse
|
4
|
Richard G, Princiotta MF, Bridon D, Martin WD, Steinberg GD, De Groot AS. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy. Expert Rev Vaccines 2021; 21:173-184. [PMID: 34882038 DOI: 10.1080/14760584.2022.2012456] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The field of cancer therapy has undergone a major transformation in less than a decade due to the introduction of checkpoint inhibitors, the advent of next generation sequencing and the discovery of neoantigens. The key observation that the breadth of each patient's immune response to the unique mutations or neoantigens present in their tumor is directly related to their survival has led oncologists to focus on driving immune responses to neoantigens through vaccination. Oncology has entered the era of precision immunotherapy, and cancer vaccine development is undergoing a paradigm shift. AREAS COVERED Neoantigens are short peptide sequences found in tumors, but not noncancerous tissues, the vast majority of which are unique to each patient. In addition to providing a description of the distinguishing features of neoantigen discovery platforms, this review will address cross-cutting personalized cancer vaccine design themes and developmental stumbling blocks. EXPERT OPINION Immunoinformatic pipelines that can rapidly scan cancer genomes and identify 'the best' neoantigens are in high demand. Despite the need for such tools, immunoinformatic methods for identifying neoepitopes in cancer genomes are diverse and have not been well-validated. Validation of 'personalized vaccine design pipelines' will bring about a revolution in neoantigen-based vaccine design and delivery.
Collapse
Affiliation(s)
| | | | | | | | - Gary D Steinberg
- EpiVax Therapeutics, Inc., Providence, RI, USA.,Perlmutter Cancer Center, Department of Urology at NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021; 18:215-229. [PMID: 33473220 PMCID: PMC7816749 DOI: 10.1038/s41571-020-00460-2] [Citation(s) in RCA: 468] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 01/31/2023]
Abstract
Within the past decade, the field of immunotherapy has revolutionized the treatment of many cancers with the development and regulatory approval of various immune-checkpoint inhibitors and chimeric antigen receptor T cell therapies in diverse indications. Another promising approach to cancer immunotherapy involves the use of personalized vaccines designed to trigger de novo T cell responses against neoantigens, which are highly specific to tumours of individual patients, in order to amplify and broaden the endogenous repertoire of tumour-specific T cells. Results from initial clinical studies of personalized neoantigen-based vaccines, enabled by the availability of rapid and cost-effective sequencing and bioinformatics technologies, have demonstrated robust tumour-specific immunogenicity and preliminary evidence of antitumour activity in patients with melanoma and other cancers. Herein, we provide an overview of the complex process that is necessary to generate a personalized neoantigen vaccine, review the types of vaccine-induced T cells that are found within tumours and outline strategies to enhance the T cell responses. In addition, we discuss the current status of clinical studies testing personalized neoantigen vaccines in patients with cancer and considerations for future clinical investigation of this novel, individualized approach to immunotherapy.
Collapse
Affiliation(s)
- Eryn Blass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021. [PMID: 33473220 DOI: 10.1038/s41571-020-00460-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Within the past decade, the field of immunotherapy has revolutionized the treatment of many cancers with the development and regulatory approval of various immune-checkpoint inhibitors and chimeric antigen receptor T cell therapies in diverse indications. Another promising approach to cancer immunotherapy involves the use of personalized vaccines designed to trigger de novo T cell responses against neoantigens, which are highly specific to tumours of individual patients, in order to amplify and broaden the endogenous repertoire of tumour-specific T cells. Results from initial clinical studies of personalized neoantigen-based vaccines, enabled by the availability of rapid and cost-effective sequencing and bioinformatics technologies, have demonstrated robust tumour-specific immunogenicity and preliminary evidence of antitumour activity in patients with melanoma and other cancers. Herein, we provide an overview of the complex process that is necessary to generate a personalized neoantigen vaccine, review the types of vaccine-induced T cells that are found within tumours and outline strategies to enhance the T cell responses. In addition, we discuss the current status of clinical studies testing personalized neoantigen vaccines in patients with cancer and considerations for future clinical investigation of this novel, individualized approach to immunotherapy.
Collapse
Affiliation(s)
- Eryn Blass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Lam H, McNeil LK, Starobinets H, DeVault VL, Cohen RB, Twardowski P, Johnson ML, Gillison ML, Stein MN, Vaishampayan UN, DeCillis AP, Foti JJ, Vemulapalli V, Tjon E, Ferber K, DeOliveira DB, Broom W, Agnihotri P, Jaffee EM, Wong KK, Drake CG, Carroll PM, Davis TA, Flechtner JB. An Empirical Antigen Selection Method Identifies Neoantigens That Either Elicit Broad Antitumor T-cell Responses or Drive Tumor Growth. Cancer Discov 2021; 11:696-713. [PMID: 33504579 DOI: 10.1158/2159-8290.cd-20-0377] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
Neoantigens are critical targets of antitumor T-cell responses. The ATLAS bioassay was developed to identify neoantigens empirically by expressing each unique patient-specific tumor mutation individually in Escherichia coli, pulsing autologous dendritic cells in an ordered array, and testing the patient's T cells for recognition in an overnight assay. Profiling of T cells from patients with lung cancer revealed both stimulatory and inhibitory responses to individual neoantigens. In the murine B16F10 melanoma model, therapeutic immunization with ATLAS-identified stimulatory neoantigens protected animals, whereas immunization with peptides associated with inhibitory ATLAS responses resulted in accelerated tumor growth and abolished efficacy of an otherwise protective vaccine. A planned interim analysis of a clinical study testing a poly-ICLC adjuvanted personalized vaccine containing ATLAS-identified stimulatory neoantigens showed that it is well tolerated. In an adjuvant setting, immunized patients generated both CD4+ and CD8+ T-cell responses, with immune responses to 99% of the vaccinated peptide antigens. SIGNIFICANCE: Predicting neoantigens in silico has progressed, but empirical testing shows that T-cell responses are more nuanced than straightforward MHC antigen recognition. The ATLAS bioassay screens tumor mutations to uncover preexisting, patient-relevant neoantigen T-cell responses and reveals a new class of putatively deleterious responses that could affect cancer immunotherapy design.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Hubert Lam
- Genocea Biosciences Inc., Cambridge, Massachusetts
| | | | | | | | - Roger B Cohen
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Maura L Gillison
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark N Stein
- Columbia University Medical Center, New York, New York
| | | | | | - James J Foti
- Genocea Biosciences Inc., Cambridge, Massachusetts
| | | | - Emily Tjon
- Genocea Biosciences Inc., Cambridge, Massachusetts
| | - Kyle Ferber
- Genocea Biosciences Inc., Cambridge, Massachusetts
| | | | - Wendy Broom
- Genocea Biosciences Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhuo M, Gorgun FM, Tyler DS, Englander EW. Transient activation of tumoral DNA damage tolerance pathway coupled with immune checkpoint blockade exerts durable tumor regression in mouse melanoma. Pigment Cell Melanoma Res 2020; 34:605-617. [PMID: 33124186 DOI: 10.1111/pcmr.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
Major advances in cancer therapy rely on engagement of the patient's immune system and suppression of mechanisms that impede the antitumor immune response. Among the most notable is immune checkpoint blockade (ICB) therapy that releases immune cells from suppression. Although ICB has had significant success particularly in melanoma, it eradicates tumors in subsets of patients and sequencing data across different cancers suggest that tumors with high mutational loads are more likely to respond to ICB. This is consistent with the premise that greater tumoral mutational loads contribute to formation of neoantigens that spur the body's antitumor immune response. Prompted by strong evidence supporting the therapeutic benefits of neoantigens in the context of ICB, we have developed a mouse melanoma combination treatment, where intratumoral administration of DNA-damaging drug transiently activates intrinsic mutagenic DNA damage tolerance pathway and improves success rates of ICB. Using the YUMM1.7 cells melanoma model, we demonstrate that intratumoral delivery of cisplatin activates translesion synthesis DNA polymerases-catalyzed DNA synthesis on damaged DNA, which when coupled with ICB regimen, elicits durable tumor regression. We expect that this new combination protocol affords insights with clinical relevance that will help expand the range of patients who benefit from ICB therapy.
Collapse
Affiliation(s)
- Ming Zhuo
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Falih M Gorgun
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Douglas S Tyler
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Ella W Englander
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
9
|
Restrepo P, Yong R, Laface I, Tsankova N, Nael K, Akturk G, Sebra R, Gnjatic S, Hormigo A, Losic B. Tumoral and immune heterogeneity in an anti-PD-1-responsive glioblastoma: a case study. Cold Spring Harb Mol Case Stud 2020; 6:a004762. [PMID: 31907277 PMCID: PMC7133743 DOI: 10.1101/mcs.a004762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/12/2019] [Indexed: 01/22/2023] Open
Abstract
Clinical benefit of immune checkpoint blockade in glioblastoma (GBM) is rare, and we hypothesize that tumor clonal evolution and the immune microenvironment are key determinants of response. Here, we present a detailed molecular characterization of the intratumoral and immune heterogeneity in an IDH wild-type, MGMT-negative GBM patient who plausibly benefited from anti-PD-1 therapy with an unusually long 25-mo overall survival time. We leveraged multiplex immunohistochemistry, RNA-seq, and whole-exome data from the primary tumor and three resected regions of recurrent disease to survey regional tumor-immune interactions, genomic instability, mutation burden, and expression profiles. We found significant regional heterogeneity in the neoantigenic and immune landscape, with a differential T-cell signature among recurrent sectors, a uniform loss of focal amplifications in EGFR, and a novel subclonal EGFR mutation. Comparisons with recently reported correlates of checkpoint blockade in GBM and with TCGA-GBM revealed appreciable intratumoral heterogeneity that may have contributed to a differential PD-1 blockade response.
Collapse
Affiliation(s)
- Paula Restrepo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Raymund Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ilaria Laface
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Nadejda Tsankova
- Department of Pathology, and Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kambiz Nael
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Guray Akturk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Sema4, a Mount Sinai venture, Stamford, Connecticut 06902, USA
| | - Sacha Gnjatic
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Hematology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Adilia Hormigo
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Diabetes, Obesity and Metabolism Institute, and Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
10
|
Jiang T, Cheng R, Pan Y, Zhang H, He Y, Su C, Ren S, Zhou C. Heterogeneity of neoantigen landscape between primary lesions and their matched metastases in lung cancer. Transl Lung Cancer Res 2020; 9:246-256. [PMID: 32420064 PMCID: PMC7225166 DOI: 10.21037/tlcr.2020.03.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Personalized cancer vaccines based on tumor-derived neoantigens have shown strong and long-lasting antitumor effect in patients with some solid tumors. However, whether neoantigens identified from primary lesions could represent their metastatic lesions, and consequently the effect of vaccine therapy remained unknown. Methods To investigate whether neoantigens identified from primary tumors are similar to their matched metastases in lung cancer, we identified 79 samples from 24 cases. All of samples were collected before any systemic therapy. Major criteria for neoantigen identification included: derived from tumor-specific mutations, fold change >10 comparing to germline expression level, high predicted human leukocyte antigen (HLA) binding affinity and peptide of 9–11 amino acids in length. Results We found a wide range of tumor neoantigen burden in both primaries and metastases. The counts, overall distribution pattern and predicted HLA binding affinity of neoantigens were similar between primaries and metastases. However, only 20% of shared neoantigens (presented in both primaries and metastases) was observed, which were mainly derived from single nucleotide variants (SNVs) and fusions. A variety of corresponding HLA alleles were observed and 50.0% of cases were HLA-C*06:02. Finally, we observed the neoantigen intrametastases homogeneity in patients with sole brain metastases. Conclusions Neoantigen landscape in terms of the number, type and predicted HLA binding affinity was similar between primaries and metastases, but the percentage of shared neoantigens is only modest, suggesting vaccine development based solely on primary tumor neoantigen may not offer optimal therapeutic outcome, and shared neoantigen needs to be seriously considered.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Ruirui Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuanwei Pan
- Department of Imaging and Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Henghui Zhang
- Beijing Genecast Biotechnology Co., Beijing 100000, China
| | - Ying He
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200245, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
11
|
Bonsack M, Hoppe S, Winter J, Tichy D, Zeller C, Küpper MD, Schitter EC, Blatnik R, Riemer AB. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC–Peptide Binding Data Set. Cancer Immunol Res 2019; 7:719-736. [DOI: 10.1158/2326-6066.cir-18-0584] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/19/2018] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
|
12
|
Buckle AM, Borg NA. Integrating Experiment and Theory to Understand TCR-pMHC Dynamics. Front Immunol 2018; 9:2898. [PMID: 30581442 PMCID: PMC6293202 DOI: 10.3389/fimmu.2018.02898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
The conformational dynamism of proteins is well established. Rather than having a single structure, proteins are more accurately described as a conformational ensemble that exists across a rugged energy landscape, where different conformational sub-states interconvert. The interaction between αβ T cell receptors (TCR) and cognate peptide-MHC (pMHC) is no exception, and is a dynamic process that involves substantial conformational change. This review focuses on technological advances that have begun to establish the role of conformational dynamics and dynamic allostery in TCR recognition of the pMHC and the early stages of signaling. We discuss how the marriage of molecular dynamics (MD) simulations with experimental techniques provides us with new ways to dissect and interpret the process of TCR ligation. Notably, application of simulation techniques lags behind other fields, but is predicted to make substantial contributions. Finally, we highlight integrated approaches that are being used to shed light on some of the key outstanding questions in the early events leading to TCR signaling.
Collapse
Affiliation(s)
- Ashley M Buckle
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Natalie A Borg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|