1
|
Batista IA, Machado JC, Melo SA. Advances in exosomes utilization for clinical applications in cancer. Trends Cancer 2024; 10:947-968. [PMID: 39168775 DOI: 10.1016/j.trecan.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Exosomes are regarded as having transformative potential for clinical applications. Exosome-based liquid biopsies offer a noninvasive method for early cancer detection and real-time disease monitoring. Clinical trials are underway to validate the efficacy of exosomal biomarkers for enhancing diagnostic accuracy and predicting treatment responses. Additionally, engineered exosomes are being developed as targeted drug delivery systems that can navigate the bloodstream to deliver therapeutic agents to tumor sites, thus enhancing treatment efficacy while minimizing systemic toxicity. Exosomes also exhibit immunomodulatory properties, which are being harnessed to boost antitumor immune responses. In this review, we detail the latest advances in clinical trials and research studies, underscoring the potential of exosomes to revolutionize cancer care.
Collapse
Affiliation(s)
- Inês A Batista
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal.
| |
Collapse
|
2
|
Xu H, Feng J, Dai N, Han Q, Zhou B, Yang G, Hu R. Self-assembling peptide hydrogel scaffold integrating stem cell-derived exosomes for infected bone defects. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1511-1522. [PMID: 38574263 DOI: 10.1080/09205063.2024.2336316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Infected bone defect (IBD) is a great challenge in orthopedics, which involves in bone loss and infection. Here, a self-assembling hydrogel scaffold (named AMP-RAD/EXO), integrating antimicrobial peptides(AMPs), RADA16 and BMSCs exosomes with an innovative strategy, is developed and applied in IBD treatment for sustained antimicrobial ability, accelerating osteoblasts proliferation and promoting bone regeneration. AMPs present an excellent ability to inhibit infection, RADA16 is a self-assembling peptide hydrogel for AMPs delivery, and BMSCs exosomes can promote the bone regeneration. The prepared AMP-RAD/EXO exhibited a polyporous 3D structure for imbibition of BMSCs exosomes and migration of osteoblasts. In vitro studies indicate AMP-RAD/EXO can inhibit the growth of Staphylococcus aureus, accelerate the proliferation and migration of BMSCs. More importantly, in vivo results also prove that AMP-RAD/EXO exhibit an excellent effect on IBD treatment. Thus, the prepared AMP-RAD/EXO provides a multifunctional scaffold concept for bone tissue engineering technology.
Collapse
Affiliation(s)
- Haiyan Xu
- Orthopaedics, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Jing Feng
- Nursing Department, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Ning Dai
- Nursing Department, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Qiong Han
- Orthopaedics, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Bei Zhou
- Nursing Department, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Guiyun Yang
- Nursing Department, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Rui Hu
- Orthopaedics, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
3
|
Adem B, Bastos N, Ruivo CF, Sousa-Alves S, Dias C, Vieira PF, Batista IA, Cavadas B, Saur D, Machado JC, Cai D, Melo SA. Exosomes define a local and systemic communication network in healthy pancreas and pancreatic ductal adenocarcinoma. Nat Commun 2024; 15:1496. [PMID: 38383468 PMCID: PMC10881969 DOI: 10.1038/s41467-024-45753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a lethal disease, requires a grasp of its biology for effective therapies. Exosomes, implicated in cancer, are poorly understood in living systems. Here we use the genetically engineered mouse model (ExoBow) to map the spatiotemporal distribution of exosomes from healthy and PDAC pancreas in vivo to determine their biological significance. We show that, within the PDAC microenvironment, cancer cells establish preferential communication routes through exosomes with cancer associated fibroblasts and endothelial cells. The latter being a conserved event in the healthy pancreas. Inhibiting exosomes secretion in both scenarios enhances angiogenesis, underscoring their contribution to vascularization and to cancer. Inter-organ communication is significantly increased in PDAC with specific organs as most frequent targets of exosomes communication occurring in health with the thymus, bone-marrow, brain, and intestines, and in PDAC with the kidneys, lungs and thymus. In sum, we find that exosomes mediate an organized intra- and inter- pancreas communication network with modulatory effects in vivo.
Collapse
Affiliation(s)
- Bárbara Adem
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nuno Bastos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carolina F Ruivo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Sousa-Alves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carolina Dias
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Patrícia F Vieira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Inês A Batista
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Cavadas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Dieter Saur
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - José C Machado
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- P.CCC Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Dawen Cai
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, MI, USA
- Biophysics, LS&A, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sonia A Melo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
- P.CCC Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal.
| |
Collapse
|
4
|
Su C, Mo J, Dong S, Liao Z, Zhang B, Zhu P. Integrinβ-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun Signal 2024; 22:71. [PMID: 38279122 PMCID: PMC10811905 DOI: 10.1186/s12964-023-01338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 01/28/2024] Open
Abstract
Integrinβ-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Hüttmann N, Li Y, Poolsup S, Zaripov E, D’Mello R, Susevski V, Minic Z, Berezovski MV. Surface Proteome of Extracellular Vesicles and Correlation Analysis Reveal Breast Cancer Biomarkers. Cancers (Basel) 2024; 16:520. [PMID: 38339272 PMCID: PMC10854524 DOI: 10.3390/cancers16030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer (BC) is the second most frequently diagnosed cancer and accounts for approximately 25% of new cancer cases in Canadian women. Using biomarkers as a less-invasive BC diagnostic method is currently under investigation but is not ready for practical application in clinical settings. During the last decade, extracellular vesicles (EVs) have emerged as a promising source of biomarkers because they contain cancer-derived proteins, RNAs, and metabolites. In this study, EV proteins from small EVs (sEVs) and medium EVs (mEVs) were isolated from BC MDA-MB-231 and MCF7 and non-cancerous breast epithelial MCF10A cell lines and then analyzed by two approaches: global proteomic analysis and enrichment of EV surface proteins by Sulfo-NHS-SS-Biotin labeling. From the first approach, proteomic profiling identified 2459 proteins, which were subjected to comparative analysis and correlation network analysis. Twelve potential biomarker proteins were identified based on cell line-specific expression and filtered by their predicted co-localization with known EV marker proteins, CD63, CD9, and CD81. This approach resulted in the identification of 11 proteins, four of which were further investigated by Western blot analysis. The presence of transmembrane serine protease matriptase (ST14), claudin-3 (CLDN3), and integrin alpha-7 (ITGA7) in each cell line was validated by Western blot, revealing that ST14 and CLDN3 may be further explored as potential EV biomarkers for BC. The surface labeling approach enriched proteins that were not identified using the first approach. Ten potential BC biomarkers (Glutathione S-transferase P1 (GSTP1), Elongation factor 2 (EEF2), DEAD/H box RNA helicase (DDX10), progesterone receptor (PGR), Ras-related C3 botulinum toxin substrate 2 (RAC2), Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), Aconitase 2 (ACO2), UTP20 small subunit processome component (UTP20), NEDD4 binding protein 2 (N4BP2), Programmed cell death 6 (PDCD6)) were selected from surface proteins commonly identified from MDA-MB-231 and MCF7, but not identified in MCF10A EVs. In total, 846 surface proteins were identified from the second approach, of which 11 were already known as BC markers. This study supports the proposition that Evs are a rich source of known and novel biomarkers that may be used for non-invasive detection of BC. Furthermore, the presented datasets could be further explored for the identification of potential biomarkers in BC.
Collapse
Affiliation(s)
- Nico Hüttmann
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Yingxi Li
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Suttinee Poolsup
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Rochelle D’Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Vanessa Susevski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
6
|
Shi L, Cai H, Wang H, Wang Q, Shi L, Li T. Proximity-Enhanced Electrochemiluminescence Sensing Platform for Effective Capturing of Exosomes and Probing Internal MicroRNAs Involved in Cancer Cell Apoptosis. Anal Chem 2023; 95:17662-17669. [PMID: 37991490 DOI: 10.1021/acs.analchem.3c03412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Exosomal microRNAs (miRNAs) play critical regulatory roles in many cellular processes, and so how to probe them has attracted increasing interest. Here we propose an aptamer-functionalized dimeric framework nucleic acid (FNA) nanoplatform for effective capture of exosomes and directly probing internal miRNAs with electrochemiluminescence (ECL) detection, not requiring RNA extraction in conventional counterparts. A CD63 protein-binding aptamer is tethered to one of the FNA structures, allowing exosomes to be immobilized there and release internal miRNAs after lysis. The target miRNA induces the formation of a Y-shaped junction on another FNA structure in a close proximity state, which benefits the loading of covalently hemin-modified spherical nucleic acid enzymes for enhanced ECL readout in the luminol-H2O2 system. In this facile way, the ultrasensitive detection of exosomal miR-21 from cancer cells is accomplished and then used for cell apoptosis analysis, indicating that the oncogene miR-21 negatively participates in the regulation of the apoptotic process; namely, downregulating the miR-21 level is unbeneficial for cancer cell growth.
Collapse
Affiliation(s)
- Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Haiying Cai
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Han Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Pitchaimani A, Ferreira M, Palange A, Pannuzzo M, De Mei C, Spano R, Marotta R, Pelacho B, Prosper F, Decuzzi P. Compartmentalized drug localization studies in extracellular vesicles for anticancer therapy. NANOSCALE ADVANCES 2023; 5:6830-6836. [PMID: 38059035 PMCID: PMC10696952 DOI: 10.1039/d3na00207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/14/2023] [Indexed: 12/08/2023]
Abstract
In the development of therapeutic extracellular vesicles (EVs), drug encapsulation efficiencies are significantly lower when compared with synthetic nanomedicines. This is due to the hierarchical structure of the EV membrane and the physicochemical properties of the candidate drug (molecular weight, hydrophilicity, lipophilicity, and so on). As a proof of concept, here we demonstrated the importance of drug compartmentalization in EVs as an additional parameter affecting the therapeutic potential of drug-loaded EVs. In human adipose mesenchymal stem cell (hADSC) derived EVs, we performed a comparative drug loading analysis using two formulations of the same chemotherapeutic molecule - free doxorubicin (DOX) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) lipid-conjugated doxorubicin (L-DOX) - to enhance the intracellular uptake and therapeutic efficacy. By nano surface energy transfer (NSET) and molecular simulation techniques, along with cryo-TEM analysis, we confirmed the differential compartmentalization of these two molecules in hADSC EVs. L-DOX was preferentially adsorbed onto the surface of the EV, due to its higher lipophilicity, whereas free DOX was mostly encapsulated within the EV core. Also, the L-DOX loaded EV (LDOX@EV) returned an almost three-fold higher DOX content as compared to the free DOX loaded EV (DOX@EV), for a given input mass of drug. Based on the cellular investigations, L-DOX@EV showed higher cell internalization than DOX@EV. Also, in comparison with free L-DOX, the magnitude of therapeutic potential enhancement displayed by the surface compartmentalized L-DOX@EV is highly promising and can be exploited to overcome the sensitivity of many potential drugs, which are impermeable in nature. Overall, this study illustrates the significance of drug compartmentalization in EVs and how this could affect intracellular delivery, loading efficiency, and therapeutic effect. This will further lay the foundation for the future systematic investigation of EV-based biotherapeutic delivery platforms for personalized medicine.
Collapse
Affiliation(s)
- Arunkumar Pitchaimani
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Miguel Ferreira
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Annalisa Palange
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Martina Pannuzzo
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Claudia De Mei
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Raffaele Spano
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Beatriz Pelacho
- Centre for Applied Medical Research (CIMA), University of Navarra Navarra Spain
| | - Felipe Prosper
- Centre for Applied Medical Research (CIMA), University of Navarra Navarra Spain
- Clinica Universidad de Navarra, CCUN, IDISNA and CIBERONC Navarra Spain
| | - Paolo Decuzzi
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| |
Collapse
|
8
|
Deng M, Wu S, Huang P, Liu Y, Li C, Zheng J. Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence. Asian J Pharm Sci 2023; 18:100870. [PMID: 38161784 PMCID: PMC10755545 DOI: 10.1016/j.ajps.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024] Open
Abstract
Metastasis-associated processes are the predominant instigator of fatalities linked to cancer, wherein the pivotal role of circulating tumor cells lies in the resurgence of malignant growth. In recent epochs, exosomes, constituents of the extracellular vesicle cohort, have garnered attention within the field of tumor theranostics owing to their inherent attributes encompassing biocompatibility, modifiability, payload capacity, stability, and therapeutic suitability. Nonetheless, the rudimentary functionalities and limited efficacy of unmodified exosomes curtail their prospective utility. In an effort to surmount these shortcomings, intricate methodologies amalgamating nanotechnology with genetic manipulation, chemotherapy, immunotherapy, and optical intervention present themselves as enhanced avenues to surveil and intercede in tumor metastasis and relapse. This review delves into the manifold techniques currently employed to engineer exosomes, with a specific focus on elucidating the interplay between exosomes and the metastatic cascade, alongside the implementation of tailored exosomes in abating tumor metastasis and recurrence. This review not only advances comprehension of the evolving landscape within this domain but also steers the trajectory of forthcoming investigations.
Collapse
Affiliation(s)
- Min Deng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Peizheng Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chong Li
- Medical Research Institute, Southwest University, Chongqing 400716, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| |
Collapse
|
9
|
Malekian F, Shamsian A, Kodam SP, Ullah M. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective. J Physiol 2023; 601:4853-4872. [PMID: 35570717 DOI: 10.1113/jp282799] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2023] Open
Abstract
Exosomes are membrane-bound vesicles that are released by most cells. They carry nucleic acids, cytokines, growth factors, proteins, lipids, and metabolites. They are responsible for inter- and intracellular communications and their role in drug delivery is well defined. Exosomes have great potential for therapeutic applications, but the clinical use is restricted because of limitations in standardized procedures for isolation, purification, and drug delivery. Bioengineering of exosomes could be one approach to achieve standardization and reproducible isolation for clinical use. Exosomes are important transporters for targeted drug delivery because of their small size, stable structure, non-immunogenicity, and non-toxic nature, as well as their ability to carry a wide variety of compounds. These features of exosomes can be enhanced further by bioengineering. In this review, possible exosome bioengineering approaches, their biomedical applications, and targeted drug delivery are discussed.
Collapse
Affiliation(s)
- Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Alireza Shamsian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
10
|
Bastos N, Castaldo SA, Adem B, Machado JC, Melo CA, Melo SA. SMC3 epigenetic silencing regulates Rab27a expression and drives pancreatic cancer progression. J Transl Med 2023; 21:578. [PMID: 37641131 PMCID: PMC10463307 DOI: 10.1186/s12967-023-04448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is expected to soon surpass colorectal cancer as a leading cause of cancer mortality in both males and females in the US, only lagging behind lung cancer. The lethality of PDAC is driven by late diagnosis and inefficient therapies. The complex biology of PDAC involves various cellular components, including exosomes that carry molecular information between cells. Thus, recipient cells can be reprogrammed, impacting tumorigenesis. Rab27a is a GTPase responsible for the last step of exosomes biogenesis. Hence, dissecting the mechanisms that regulate the expression of Rab27a and that control exosomes biogenesis can provide fundamental insights into the molecular underpinnings regulating PDAC progression. METHODS To assess the mechanism that regulates Rab27a expression in PDAC, we used PDAC cell lines. The biological significance of these findings was validated in PDAC genetically engineered mouse models (GEMMs) and human samples. RESULTS In this work we demonstrate in human PDAC samples and GEMMs that Rab27a expression decreases throughout the development of the disease, and that Rab27a knockout promotes disease progression. What is more, we demonstrate that Rab27a expression is epigenetically regulated in PDAC. Treatment with demethylating agents increases Rab27a expression specifically in human PDAC cell lines. We found that SMC3, a component of the cohesin complex, regulates Rab27a expression in PDAC. SMC3 methylation is present in human PDAC specimens and treatment with demethylating agents increases SMC3 expression in human PDAC cell lines. Most importantly, high levels of SMC3 methylation are associated with a worse prognosis in PDAC. Mechanistically, we identified an enhancer region within the Rab27a gene that recruits SMC3, and modulates Rab27a expression. CONCLUSION Overall, we dissected a mechanism that regulates Rab27a expression during PDAC progression and impacts disease prognosis.
Collapse
Affiliation(s)
- Nuno Bastos
- i3S - Instituto de Investigação e Inovação Em Saúde, University of Porto, 4200-135, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Stéphanie A Castaldo
- i3S - Instituto de Investigação e Inovação Em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Bárbara Adem
- i3S - Instituto de Investigação e Inovação Em Saúde, University of Porto, 4200-135, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - José C Machado
- i3S - Instituto de Investigação e Inovação Em Saúde, University of Porto, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC) Raquel Seruca, Porto, Portugal
| | - Carlos A Melo
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação Em Saúde, University of Porto, 4200-135, Porto, Portugal.
- Department of Pathology, Faculty of Medicine, University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Porto Comprehensive Cancer Center (P.CCC) Raquel Seruca, Porto, Portugal.
| |
Collapse
|
11
|
Jain DP, Dinakar YH, Kumar H, Jain R, Jain V. The multifaceted role of extracellular vesicles in prostate cancer-a review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:481-498. [PMID: 37842237 PMCID: PMC10571058 DOI: 10.20517/cdr.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 10/17/2023]
Abstract
Prostate cancer is the second most prominent form of cancer in men and confers the highest mortality after lung cancer. The term "extracellular vesicles" refers to minute endosomal-derived membrane microvesicles and it was demonstrated that extracellular vesicles affect the environment in which tumors originate. Extracellular vesicles' involvement is also established in the development of drug resistance, angiogenesis, stemness, and radioresistance in various cancers including prostate cancer. Extracellular vesicles influence the general environment, processes, and growth of prostate cancer and can be a potential area that offers a significant lead in prostate cancer therapy. In this review, we have elaborated on the multifaceted role of extracellular vesicles in various processes involved in the development of prostate cancer, and their multitude of applications in the diagnosis and treatment of prostate cancer through the encapsulation of various bioactives.
Collapse
Affiliation(s)
- Divya Prakash Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
12
|
Polyakova N, Kalashnikova M, Belyavsky A. Non-Classical Intercellular Communications: Basic Mechanisms and Roles in Biology and Medicine. Int J Mol Sci 2023; 24:ijms24076455. [PMID: 37047428 PMCID: PMC10095225 DOI: 10.3390/ijms24076455] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
In multicellular organisms, interactions between cells and intercellular communications form the very basis of the organism’s survival, the functioning of its systems, the maintenance of homeostasis and adequate response to the environment. The accumulated experimental data point to the particular importance of intercellular communications in determining the fate of cells, as well as their differentiation and plasticity. For a long time, it was believed that the properties and behavior of cells were primarily governed by the interactions of secreted or membrane-bound ligands with corresponding receptors, as well as direct intercellular adhesion contacts. In this review, we describe various types of other, non-classical intercellular interactions and communications that have recently come into the limelight—in particular, the broad repertoire of extracellular vesicles and membrane protrusions. These communications are mediated by large macromolecular structural and functional ensembles, and we explore here the mechanisms underlying their formation and present current data that reveal their roles in multiple biological processes. The effects mediated by these new types of intercellular communications in normal and pathological states, as well as therapeutic applications, are also discussed. The in-depth study of novel intercellular interaction mechanisms is required for the establishment of effective approaches for the control and modification of cell properties both for basic research and the development of radically new therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Polyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Maria Kalashnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
- Correspondence:
| |
Collapse
|
13
|
Lee YJ, Shin KJ, Jang HJ, Ryu JS, Lee CY, Yoon JH, Seo JK, Park S, Lee S, Je AR, Huh YH, Kong SY, Kwon T, Suh PG, Chae YC. GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Dev Cell 2023; 58:320-334.e8. [PMID: 36800996 DOI: 10.1016/j.devcel.2023.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/17/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.
Collapse
Affiliation(s)
- Yu Jin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Jun Jang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Sun Ryu
- Division of Translational Science, Research Institute and Hospital, National Cancer Center, Goyang 10408, Republic of Korea
| | - Chae Young Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jong Hyuk Yoon
- Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Jeong Kon Seo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sabin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - A Reum Je
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sun-Young Kong
- Division of Translational Science, Research Institute and Hospital, National Cancer Center, Goyang 10408, Republic of Korea; Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea.
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
14
|
Ivanova OM, Anufrieva KS, Kazakova AN, Malyants IK, Shnaider PV, Lukina MM, Shender VO. Non-canonical functions of spliceosome components in cancer progression. Cell Death Dis 2023; 14:77. [PMID: 36732501 PMCID: PMC9895063 DOI: 10.1038/s41419-022-05470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Dysregulation of pre-mRNA splicing is a common hallmark of cancer cells and it is associated with altered expression, localization, and mutations of the components of the splicing machinery. In the last few years, it has been elucidated that spliceosome components can also influence cellular processes in a splicing-independent manner. Here, we analyze open source data to understand the effect of the knockdown of splicing factors in human cells on the expression and splicing of genes relevant to cell proliferation, migration, cell cycle regulation, DNA repair, and cell death. We supplement this information with a comprehensive literature review of non-canonical functions of splicing factors linked to cancer progression. We also specifically discuss the involvement of splicing factors in intercellular communication and known autoregulatory mechanisms in restoring their levels in cells. Finally, we discuss strategies to target components of the spliceosome machinery that are promising for anticancer therapy. Altogether, this review greatly expands understanding of the role of spliceosome proteins in cancer progression.
Collapse
Affiliation(s)
- Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Institute for Regenerative Medicine, Sechenov University, Moscow, 119991, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Irina K Malyants
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| |
Collapse
|
15
|
Recent developments of nanomedicine delivery systems for the treatment of pancreatic cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Composition, Biogenesis, and Role of Exosomes in Tumor Development. Stem Cells Int 2022; 2022:8392509. [PMID: 36117723 PMCID: PMC9481374 DOI: 10.1155/2022/8392509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
The role of exosomes and their mechanism of action at the tumor site have received increasing attention. These microvesicles are produced by a wide range of cells including mesenchymal stem cells (MSCs) and immune cells. In particular, tumor cells release remarkable amounts of exosomes which spread to distant organs through the blood and enhance the possibility of tumor metastasis. In spite of results on tumor promoting properties, there are reports demonstrating the tumor inhibiting effects of exosomes depending on the type of the tumor and cell source. This review aims to have a comprehensive appraisal on the biogenesis, composition, and isolation of exosomes and then highlights the current knowledge of their role in cancer progression or inhibition by special focusing on MSC's exosomes (MSC-EXOs).
Collapse
|
17
|
Pompili S, Vetuschi A, Sferra R, Cappariello A. Extracellular Vesicles and Resistance to Anticancer Drugs: A Tumor Skeleton Key for Unhinging Chemotherapies. Front Oncol 2022; 12:933675. [PMID: 35814444 PMCID: PMC9259994 DOI: 10.3389/fonc.2022.933675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Although surgical procedures and clinical care allow reaching high success in fighting most tumors, cancer is still a formidable foe. Recurrence and metastatization dampen the patients’ overall survival after the first diagnosis; nevertheless, the large knowledge of the molecular bases drives these aspects. Chemoresistance is tightly linked to these features and is mainly responsible for the failure of cancer eradication, leaving patients without a crucial medical strategy. Many pathways have been elucidated to trigger insensitiveness to drugs, generally associated with the promotion of tumor growth, aggressiveness, and metastatisation. The main mechanisms reported are the expression of transporter proteins, the induction or mutations of oncogenes and transcription factors, the alteration in genomic or mitochondrial DNA, the triggering of autophagy or epithelial-to-mesenchymal transition, the acquisition of a stem phenotype, and the activation of tumor microenvironment cells. Extracellular vesicles (EVs) can directly transfer or epigenetically induce to a target cell the molecular machinery responsible for the acquisition of resistance to drugs. In this review, we resume the main body of knowledge supporting the crucial role of EVs in the context of chemoresistance, with a particular emphasis on the mechanisms related to some of the main drugs used to fight cancer.
Collapse
|
18
|
Gastric Cancer-Derived Extracellular Vesicles (EVs) Promote Angiogenesis via Angiopoietin-2. Cancers (Basel) 2022; 14:cancers14122953. [PMID: 35740619 PMCID: PMC9221039 DOI: 10.3390/cancers14122953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Angiogenesis is the formation of new blood vessels, which is essential for gastric cancer growth and metastasis. Angiopoietin-2 is a key driver of tumor angiogenesis and has recently emerged as a promising target for antiangiogenic therapy. Extracellular vesicles play an important role in tumor progression including angiogenesis. We explored the crosstalk between gastric cancer and endothelial cells mediated by vesicles, with a specific focus on angiopoietin-2. We show that primary gastric cancer and omental metastasis tissues express angiopoietin-2. We isolated gastric cancer vesicles and demonstrated that they induce the proliferation, migration, invasion, and tube formation of endothelial cells. Characterization of the angiogenic profile of these vesicles revealed high levels of proangiogenic proteins including angiopoietin-2. Using angiopoietin-2 knockdown, we demonstrate that angiopoietin-2 mediates the proangiogenic effects of the gastric cancer vesicles. Our findings suggest a new mechanism via which gastric cancer cells induce angiogenesis. Such a mechanism may be used as a target for cancer therapy. Abstract Angiogenesis is an important control point of gastric cancer (GC) progression and metastasis. Angiopoietin-2 (ANG2) is a key driver of tumor angiogenesis and metastasis, and it has been identified in primary GC tissues. Extracellular vesicles (EVs) play an important role in mediating intercellular communication through the transfer of proteins between cells. However, the expression of ANG2 in GC-EVs has never been reported. Here, we characterized the EV-mediated crosstalk between GC and endothelial cells (ECs), with particular focus on the role of ANG2. We first demonstrate that ANG2 is expressed in GC primary and metastatic tissues. We then isolated EVs from two different GC cell lines and showed that these EVs enhance EC proliferation, migration, invasion, and tube formation in vitro and in vivo. Using an angiogenesis protein array, we showed that GC-EVs contain high levels of proangiogenic proteins, including ANG2. Lastly, using Lenti viral ANG2-shRNA, we demonstrated that the proangiogenic effects of the GC-EVs were mediated by ANG2 through the activation of the PI3K/Akt signal transduction pathway. Our data suggest a new mechanism via which GC cells induce angiogenesis. This knowledge may be utilized to develop new therapies in gastric cancer.
Collapse
|
19
|
Zhou C, Shen S, Moran R, Deng N, Marbán E, Melmed S. Pituitary Somatotroph Adenoma-derived Exosomes: Characterization of Nonhormonal Actions. J Clin Endocrinol Metab 2022; 107:379-397. [PMID: 34467411 PMCID: PMC8764361 DOI: 10.1210/clinem/dgab651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 12/26/2022]
Abstract
CONTEXT The identification and biological actions of pituitary-derived exosomes remain elusive. OBJECTIVE This work aimed to validate production of exosomes derived from human and rat pituitary and elucidate their actions. METHODS Isolated extracellular vesicles (EVs) were analyzed by Nanoparticle Tracking Analysis (NTA) and expressed exosomal markers detected by Western blot, using nonpituitary fibroblast FR and myoblast H9C2 cells as controls. Exosome inhibitor GW4869 was employed to detect attenuated EV release. Exosomal RNA contents were characterized by RNA sequencing. In vitro and in vivo hepatocyte signaling alterations responding to GH1-derived exosomes (GH1-exo) were delineated by mRNA sequencing. GH1-exo actions on protein synthesis, cAMP (3',5'-cyclic adenosine 5'-monophosphate) response, cell motility, and metastases were assessed. RESULTS NTA, exosomal marker detection, and GW4869 attenuated EV release, confirming the exosomal identity of pituitary EVs. Hydrocortisone increased exosome secretion in GH1 and GH3 cells, suggesting a stress-associated response. Exosomal RNA contents showed profiles distinct for pituitary cells, and rat primary hepatocytes exposed to GH1-exo exhibited transcriptomic alterations distinct from those elicited by growth hormone or prolactin. Intravenous GH1-exo injection into rats attenuated hepatic Eif2ak2 and Atf4 mRNA expression, both involved in cAMP responses and amino acid biosynthesis. GH1-exo suppressed protein synthesis and forskolin-induced cAMP levels in hepatocytes. GH1-exo-treated HCT116 cells showed dysregulated p53 and mitogen-activated protein kinase (MAPK) pathways and attenuated motility of malignant HCT116 cells, and decreased tumor metastases in nude mice harboring splenic HCT116 implants. CONCLUSION Our findings elucidate biological actions of somatotroph-derived exosomes and implicate exosomes as nonhormonal pituitary-derived messengers.
Collapse
Affiliation(s)
- Cuiqi Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Stephen Shen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Rosemary Moran
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Shlomo Melmed
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Correspondence: Shlomo Melmed, MB ChB, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, NT 2015, Los Angeles, CA 90048, USA.
| |
Collapse
|
20
|
Ruivo CF, Bastos N, Adem B, Batista I, Duraes C, Melo CA, Castaldo SA, Campos‐Laborie F, Moutinho-Ribeiro P, Morão B, Costa-Pinto A, Silva S, Osorio H, Ciordia S, Costa JL, Goodrich D, Cavadas B, Pereira L, Kouzarides T, Macedo G, Maio R, Carneiro F, Cravo M, Kalluri R, Machado JC, Melo SA. Extracellular Vesicles from Pancreatic Cancer Stem Cells Lead an Intratumor Communication Network (EVNet) to fuel tumour progression. Gut 2022; 71:gutjnl-2021-324994. [PMID: 35012996 PMCID: PMC9271144 DOI: 10.1136/gutjnl-2021-324994] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intratumor heterogeneity drives cancer progression and therapy resistance. However, it has yet to be determined whether and how subpopulations of cancer cells interact and how this interaction affects the tumour. DESIGN We have studied the spontaneous flow of extracellular vesicles (EVs) between subpopulations of cancer cells: cancer stem cells (CSC) and non-stem cancer cells (NSCC). To determine the biological significance of the most frequent communication route, we used pancreatic ductal adenocarcinoma (PDAC) orthotopic models, patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMMs). RESULTS We demonstrate that PDAC tumours establish an organised communication network between subpopulations of cancer cells using EVs called the EVNet). The EVNet is plastic and reshapes in response to its environment. Communication within the EVNet occurs preferentially from CSC to NSCC. Inhibition of this communication route by impairing Rab27a function in orthotopic xenographs, GEMMs and PDXs is sufficient to hamper tumour growth and phenocopies the inhibition of communication in the whole tumour. Mechanistically, we provide evidence that CSC EVs use agrin protein to promote Yes1 associated transcriptional regulator (YAP) activation via LDL receptor related protein 4 (LRP-4). Ex vivo treatment of PDXs with antiagrin significantly impairs proliferation and decreases the levels of activated YAP.Patients with high levels of agrin and low inactive YAP show worse disease-free survival. In addition, patients with a higher number of circulating agrin+ EVs show a significant increased risk of disease progression. CONCLUSION PDAC tumours establish a cooperation network mediated by EVs that is led by CSC and agrin, which allows tumours to adapt and thrive. Targeting agrin could make targeted therapy possible for patients with PDAC and has a significant impact on CSC that feeds the tumour and is at the centre of therapy resistance.
Collapse
Affiliation(s)
- Carolina F Ruivo
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Nuno Bastos
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Barbara Adem
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ines Batista
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Cecilia Duraes
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Stephanie A Castaldo
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | | | - Pedro Moutinho-Ribeiro
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
- CHUSJ Centro Hospitalar Universitário de São João, Porto, Portugal
| | | | - Ana Costa-Pinto
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Soraia Silva
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Hugo Osorio
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| | - Sergio Ciordia
- Proteomics Facility, Spanish National Center for Biotechnology, Madrid, Spain
| | - Jose Luis Costa
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| | | | - Bruno Cavadas
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Luisa Pereira
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Guilherme Macedo
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
- CHUSJ Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Rui Maio
- Hospital Beatriz Ângelo, Loures, Portugal
- Hospital da Luz, Lisbon, Portugal
- NOVA Medical School, Lisbon, Portugal
| | - Fatima Carneiro
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
- CHUSJ Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Marília Cravo
- Hospital da Luz, Lisbon, Portugal
- FMUL Faculty of Medicine University of Lisbon, Lisbon, Portugal
| | - Raghu Kalluri
- Cancer Biology, University Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jose Carlos Machado
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| | - Sonia A Melo
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Rizwan MN, Ma Y, Nenkov M, Jin L, Schröder DC, Westermann M, Gaßler N, Chen Y. Tumor-derived exosomes: Key players in non-small cell lung cancer metastasis and their implication for targeted therapy. Mol Carcinog 2021; 61:269-280. [PMID: 34897815 DOI: 10.1002/mc.23378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
Abstract
Exosomes represent extracellular vesicles of endocytic origin ranging from 30 to 100 nm that are released by most of eukaryotic cells and can be found in body fluids. These vesicles in carrying DNA, RNA, microRNA (miRNA), Long noncoding RNA, proteins, and lipids serve as intercellular communicators. Due to their role in crosstalk between tumor cells and mesenchymal stroma cells, they are vital for tumor growth, progression, and anticancer drug resistance. Lung cancer is a global leading cause of cancer-related deaths with 5-year survival rates of about 7% in patients with distant metastasis. Although the implementation of targeted therapy has improved the clinical outcome of nonsmall cell lung cancer, drug resistance remains a major obstacle. Lung tumor-derived exosomes (TDEs) conveying molecular information from tumor cells to their neighbor cells or cells at distant sites of the body activate the tumor microenvironment (TME) and facilitate tumor metastasis. Exosomal miRNAs are also considered as noninvasive biomarkers for early diagnosis of lung cancer. This review summarizes the influence of lung TDEs on the TME and metastasis. Their involvement in targeted therapy resistance and potential clinical applications are discussed. Additionally, challenges encountered in the development of exosome-based therapeutic strategies are addressed.
Collapse
Affiliation(s)
- Maryam Noor Rizwan
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Yunxia Ma
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Miljana Nenkov
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Lai Jin
- Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Desiree Charlotte Schröder
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
22
|
Espejo C, Wilson R, Willms E, Ruiz-Aravena M, Pye RJ, Jones ME, Hill AF, Woods GM, Lyons AB. Extracellular vesicle proteomes of two transmissible cancers of Tasmanian devils reveal tenascin-C as a serum-based differential diagnostic biomarker. Cell Mol Life Sci 2021; 78:7537-7555. [PMID: 34655299 PMCID: PMC11073120 DOI: 10.1007/s00018-021-03955-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
The iconic Tasmanian devil (Sarcophilus harrisii) is endangered due to the transmissible cancer Devil Facial Tumour Disease (DFTD), of which there are two genetically independent subtypes (DFT1 and DFT2). While DFT1 and DFT2 can be differentially diagnosed using tumour biopsies, there is an urgent need to develop less-invasive biomarkers that can detect DFTD and distinguish between subtypes. Extracellular vesicles (EVs), the nano-sized membrane-enclosed vesicles present in most biofluids, represent a valuable resource for biomarker discovery. Here, we characterized the proteome of EVs from cultured DFTD cells using data-independent acquisition-mass spectrometry and an in-house spectral library of > 1500 proteins. EVs from both DFT1 and DFT2 cell lines expressed higher levels of proteins associated with focal adhesion functions. Furthermore, hallmark proteins of epithelial-mesenchymal transition were enriched in DFT2 EVs relative to DFT1 EVs. These findings were validated in EVs derived from serum samples, revealing that the mesenchymal marker tenascin-C was also enriched in EVs derived from the serum of devils infected with DFT2 relative to those infected with DFT1 and healthy controls. This first EV-based investigation of DFTD increases our understanding of the cancers' EVs and their possible involvement in DFTD progression, such as metastasis. Finally, we demonstrated the potential of EVs to differentiate between DFT1 and DFT2, highlighting their potential use as less-invasive liquid biopsies for the Tasmanian devil.
Collapse
Affiliation(s)
- Camila Espejo
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia.
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Eduard Willms
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Manuel Ruiz-Aravena
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Ruth J Pye
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| |
Collapse
|
23
|
Mortezaee K, Majidpoor J. Key promoters of tumor hallmarks. Int J Clin Oncol 2021; 27:45-58. [PMID: 34773527 DOI: 10.1007/s10147-021-02074-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Evolution of tumor hallmarks is a result of accommodation of tumor cells with their nearby milieu called tumor microenvironment (TME). Accommodation or adaptive responses is highly important for a cell to survive, without which no cell is allowed to take any further steps in tumorigenesis. Metabolism of cancer cells is largely depended on stroma. Composition and plasticity of cells within the stroma is highly affected from inflammatory setting of TME. Hypoxia which is a common event in many solid cancers, is known as one of the key hallmarks of chronic inflammation and the master regulator of metastasis. Transforming growth factor (TGF)-β is produced in the chronic inflammatory and chronic hypoxic settings, and it is considered as a cardinal factor for induction of all tumor hallmarks. Aging, obesity and smoking are the main predisposing factors of cancer, acting mainly through modulation of TME.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
24
|
Xiong J, Yan L, Zou C, Wang K, Chen M, Xu B, Zhou Z, Zhang D. Integrins regulate stemness in solid tumor: an emerging therapeutic target. J Hematol Oncol 2021; 14:177. [PMID: 34715893 PMCID: PMC8555177 DOI: 10.1186/s13045-021-01192-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Integrins are the adhesion molecules and transmembrane receptors that consist of α and β subunits. After binding to extracellular matrix components, integrins trigger intracellular signaling and regulate a wide spectrum of cellular functions, including cell survival, proliferation, differentiation and migration. Since the pattern of integrins expression is a key determinant of cell behavior in response to microenvironmental cues, deregulation of integrins caused by various mechanisms has been causally linked to cancer development and progression in several solid tumor types. In this review, we discuss the integrin signalosome with a highlight of a few key pro-oncogenic pathways elicited by integrins, and uncover the mutational and transcriptomic landscape of integrin-encoding genes across human cancers. In addition, we focus on the integrin-mediated control of cancer stem cell and tumor stemness in general, such as tumor initiation, epithelial plasticity, organotropic metastasis and drug resistance. With insights into how integrins contribute to the stem-like functions, we now gain better understanding of the integrin signalosome, which will greatly assist novel therapeutic development and more precise clinical decisions.
Collapse
Affiliation(s)
- Jiangling Xiong
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China.,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China
| | - Lianlian Yan
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China.,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China
| | - Cheng Zou
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China.,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China
| | - Kai Wang
- Department of Urology, School of Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Mengjie Chen
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China.,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.
| | - Zhipeng Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Dingxiao Zhang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China. .,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China.
| |
Collapse
|
25
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
26
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
27
|
Zheng H, Chen C, Luo Y, Yu M, He W, An M, Gao B, Kong Y, Ya Y, Lin Y, Li Y, Xie K, Huang J, Lin T. Tumor-derived exosomal BCYRN1 activates WNT5A/VEGF-C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer. Clin Transl Med 2021; 11:e497. [PMID: 34323412 PMCID: PMC8288020 DOI: 10.1002/ctm2.497] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with lymph node (LN) metastatic bladder cancer (BCa) present with extremely poor prognosis. BCa-derived exosomes function as crucial bioactive cargo carriers to mediate the signal transduction in tumor microenvironment triggering tumor metastasis. However, the mechanisms underlying exosome-mediated LN metastasis in BCa are unclear. METHODS We conducted the high-throughput sequencing to explore the expression profile of long noncoding RNA (lncRNA) in urinary exosomes (urinary-EXO) from patients with BCa and further evaluated the clinical relevance of exosomal lncRNA BCYRN1 in a larger 210-case cohort. The functional role of exosomal BCYRN1 was evaluated through the migration and tube formation assays in vitro and the footpad-popliteal LN metastasis model in vivo. RNA pull-down assays, luciferase assays, and actinomycin assays were conducted to detect the regulatory mechanism of exosomal BCYRN1. RESULTS LncRNA BCYRN1 was substantially upregulated in urinary-EXO from patients with BCa, and associated with the LN metastasis of BCa. We demonstrated that exosomal BCYRN1 markedly promoted tube formation and migration of human lymphatic endothelial cells (HLECs) in vitro and lymphangiogenesis and LN metastasis of BCa in vivo. Mechanistically, BCYRN1 epigenetically upregulated WNT5A expression by inducing hnRNPA1-associated H3K4 trimethylation in WNT5A promoter, which activated Wnt/β-catenin signaling to facilitate the secretion of VEGF-C in BCa. Moreover, exosomal BCYRN1 was transmitted to HLECs to stabilize the VEGFR3 mRNA and thus formed an hnRNPA1/WNT5A/VEGFR3 feedforward regulatory loop, ultimately promoting the lymphatic metastasis of BCa. Importantly, blocking VEGFR3 with specific inhibitor, SAR131675 significantly impaired exosomal BCYRN1-induced the LN metastasis in vivo. Clinically, exosomal BCYRN1 was positively associated with the shorter survival of BCa patients and identified as a poor prognostic factor of patients. CONCLUSION Our results uncover a novel mechanism by which exosomal BCYRN1 synergistically enhances VEGF-C/VEGFR3 signaling-induced lymphatic metastasis of BCa, indicating that BCYRN1 may serve as an encouraging therapeutic target for patients with BCa.
Collapse
Affiliation(s)
- Hanhao Zheng
- Department of UrologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Changhao Chen
- Department of UrologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Yuming Luo
- Department of General SurgeryGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Min Yu
- Department of General SurgeryGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Wang He
- Department of UrologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Mingjie An
- Department of UrologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Bowen Gao
- Department of Pancreatobiliary SurgerySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Yao Kong
- Department of General SurgeryGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Yiyao Ya
- Department of UrologyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yan Lin
- Department of UrologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Yuting Li
- Department of General SurgeryGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Keji Xie
- Department of UrologyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jian Huang
- Department of UrologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| |
Collapse
|
28
|
Martínez-Greene JA, Hernández-Ortega K, Quiroz-Baez R, Resendis-Antonio O, Pichardo-Casas I, Sinclair DA, Budnik B, Hidalgo-Miranda A, Uribe-Querol E, Ramos-Godínez MDP, Martínez-Martínez E. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. J Extracell Vesicles 2021; 10:e12087. [PMID: 33936570 PMCID: PMC8077108 DOI: 10.1002/jev2.12087] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer‐based precipitation and size exclusion chromatography (Pre‐SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early‐ and late‐eluting EV fractions, we performed a quantitative proteomic analysis of MDA‐MB‐468‐derived EVs. We identified 286 exclusive proteins in early‐eluting fractions and 148 proteins with a differential concentration between early‐ and late‐eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies.
Collapse
Affiliation(s)
- Juan A Martínez-Greene
- Laboratory of Cell Communication & Extracellular Vesicles Instituto Nacional de Medicina Genómica Mexico City Mexico
| | - Karina Hernández-Ortega
- Departamento de Biología Facultad de Química Universidad Nacional Autónoma de México Ciudad de México México
| | - Ricardo Quiroz-Baez
- Departamento de Investigación Básica Instituto Nacional de Geriatría Mexico City Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory Instituto Nacional de Medicina Genómica Mexico City Mexico.,Coordinación de la Investigación Científica-Red de Apoyo a la Investigación Universidad Nacional Autónoma de México Mexico City Mexico
| | - Israel Pichardo-Casas
- Department of Genetics Paul F. Glenn Labs for the Biology of Aging Harvard Medical School Boston Massachusetts USA
| | - David A Sinclair
- Department of Genetics Paul F. Glenn Labs for the Biology of Aging Harvard Medical School Boston Massachusetts USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory Division of Science Harvard University Cambridge Massachusetts USA
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer Instituto Nacional de Medicina Genómica Mexico City Mexico
| | - Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo División de Estudios de Posgrado e Investigación Facultad de Odontología Universidad Nacional Autónoma de México Mexico City Mexico
| | | | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles Instituto Nacional de Medicina Genómica Mexico City Mexico
| |
Collapse
|
29
|
Bongiovanni L, Andriessen A, Wauben MHM, Hoen ENMN', de Bruin A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet Pathol 2021; 58:453-471. [PMID: 33813952 PMCID: PMC8064535 DOI: 10.1177/0300985821999328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Present address: Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | | | - Alain de Bruin
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
31
|
Stefanius K, Servage K, Orth K. Exosomes in cancer development. Curr Opin Genet Dev 2021; 66:83-92. [PMID: 33477017 DOI: 10.1016/j.gde.2020.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Exosomes are secreted small extracellular vesicles (EVs) packaged with diverse biological cargo. They mediate complex intercellular communications among cells in maintenance of normal physiology or to trigger profound disease progression. Increasing numbers of studies have identified exosome-mediated functions contributing to cancer progression, including roles in paracrine cell-to-cell communication, stromal reprogramming, angiogenesis, and immune responses. Despite the growing body of knowledge, the specific role of exosomes in mediating pre-cancerous conditions is not fully understood and their ability to transform a healthy cell is still controversial. Here we review recent studies describing functions attributed to exosomes in different stages of carcinogenesis. We also explore how exosomes ultimately contribute to the progression of a primary tumor to metastatic disease.
Collapse
Affiliation(s)
- Karoliina Stefanius
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
32
|
The Influence of a Stressful Microenvironment on Tumor Exosomes: A Focus on the DNA Cargo. Int J Mol Sci 2020; 21:ijms21228728. [PMID: 33227947 PMCID: PMC7699188 DOI: 10.3390/ijms21228728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Exosomes secreted by tumor cells, through the transport of bioactive molecules, reprogram the surroundings, building a microenvironment to support the development of the tumor. The discovery that exosomes carry genomic DNA reflecting that of the tumor cell of origin has encouraged studies to use them as non-invasive biomarkers. The exosome-mediated transfer of oncogenes suggested a new mechanism of malignant transformation that could play a role in the formation of metastases. Several studies have examined the role of tumor exosomes on the modulation of the tumor microenvironment, but relatively few have been directed to assess how stressful stimuli can influence their production and cargo. Understanding the changes in exosome loads and the production pattern of the stressed tumor cell may uncover actionable mechanisms responsible for tumor progression.
Collapse
|
33
|
Wu Q, Liu W, Wang J, Zhu L, Wang Z, Peng Y. Exosomal noncoding RNAs in colorectal cancer. Cancer Lett 2020; 493:228-235. [PMID: 32898600 DOI: 10.1016/j.canlet.2020.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a commonly diagnosed malignancy with unsatisfactory survival outcomes. Recent studies indicate that noncoding RNAs (ncRNAs) can be selectively packaged into exosomes, the extracellular vesicles composed of a lipid bilayer, and delivered from donor to recipient cells, thus regulating the behavior of the recipient cells. Increasing evidence has demonstrated that exosomal ncRNAs in blood exhibit distinct expression patterns among CRC patients with or without metastasis, and healthy controls. Moreover, exosomal ncRNAs can participate in the regulation of tumor microenvironment, the establishment of pre-metastatic niches, and the induction of drug resistance via cell-to-cell communication. Intriguingly, exosomal ncRNAs have the potential to serve as biomarkers for diagnosis, prognostic prediction, and therapeutic response monitoring of patients with CRC. In this review, we summarize the emerging functions of exosomal ncRNAs during CRC development and also discuss their potential clinical application in patients with CRC.
Collapse
Affiliation(s)
- Qingbin Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Wang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
34
|
Mary B, Ghoroghi S, Hyenne V, Goetz JG. Live tracking of extracellular vesicles in larval zebrafish. Methods Enzymol 2020; 645:243-275. [PMID: 33565975 DOI: 10.1016/bs.mie.2020.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Formerly considered as insignificant cell debris, extracellular vesicles (EVs) have emerged as potent mediators of cell-cell communication, both in proximity and at distance from the producing cell. EVs are transported in body fluids and can be internalized by specific distant cells to ultimately deliver a functional message. Despite their striking importance in many physiological and pathological contexts, the exact mechanisms by which EVs impose local and distant modifications of the microenvironment in vivo remain to be fully understood. We realized that some conceptual gaps are direct consequences of the difficulty to visualize the shuttling and targeting of EVs in real time in vivo. The zebrafish larvae offered attractive features for live tracking of EVs, within circulating fluids. Here, we describe the experimental procedures that we have built for dissecting the dissemination of EVs at high spatio-temporal resolution in vivo.
Collapse
Affiliation(s)
- Benjamin Mary
- INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Shima Ghoroghi
- INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Vincent Hyenne
- INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; CNRS, SNC 5055, Strasbourg, France.
| | - Jacky G Goetz
- INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
35
|
Giordano C, La Camera G, Gelsomino L, Barone I, Bonofiglio D, Andò S, Catalano S. The Biology of Exosomes in Breast Cancer Progression: Dissemination, Immune Evasion and Metastatic Colonization. Cancers (Basel) 2020; 12:cancers12082179. [PMID: 32764376 PMCID: PMC7465598 DOI: 10.3390/cancers12082179] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
In recent decades, the study of exosome biology has gained growing interest, representing an active area of cancer research with many potential clinical applications. Exosomes are small lipid bilayer particles released by cells with pleiotropic functions that have been reported to regulate the complex intracellular pathway involved in all steps of breast cancer development—from initiation to progression toward a metastatic dissemination. Particularly, the role of these microvesicles has been explored in metastasis, which represents the leading cause of breast cancer morbidity and mortality worldwide. Reports highlight that the plasticity of breast cancer cells, fundamental for the establishment of distant metastasis, may be in part attributed to exosome-carried signals shared between adjacent cells and long-distance cells in the body. In the present review, we will discuss the functions of exosomes in the metastatic breast cancer process and secondary site outgrowth. The possibility to decode the exosome functions in advanced diseases may offer new opportunities for early detection, molecular targeted therapies and exosome-based therapeutics in breast cancer.
Collapse
Affiliation(s)
- Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| | - Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| |
Collapse
|
36
|
Ding XQ, Wang ZY, Xia D, Wang RX, Pan XR, Tong JH. Proteomic Profiling of Serum Exosomes From Patients With Metastatic Gastric Cancer. Front Oncol 2020; 10:1113. [PMID: 32754443 PMCID: PMC7367030 DOI: 10.3389/fonc.2020.01113] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Clinical management of metastatic gastric cancer (mGC) remains a major challenge due to a lack of specific biomarkers and effective therapeutic targets. Recently, accumulating evidence has suggested that exosomes play an essential role in cancer metastasis and can be an excellent reservoir of novel biomarkers and candidate therapeutic targets for cancer. Therefore, in this study, we aimed to reveal the proteomic profile of mGC-derived exosomes. Methods: Exosomes were isolated from pooled serum samples of 20 mGC patients and 40 healthy controls (HC) by ultracentrifugation. Next, quantitative proteomic analyses were applied to analyze the protein profiles of the exosomes, and bioinformatic analyses were conducted on the proteomic data. Finally, the expression of exosomal protein candidates was selectively validated in individual subjects by western blot analysis. Results: We isolated exosomes from serum samples. The size of the serum derived exosomes ranged from 30 to 150 nm in diameter. The exosomal markers CD9 and CD81 were observed in the serum exosomes. However, the exosomal negative marker calnexin, an endoplasmic reticulum protein, was not detected in exosomes. Overall, 443 exosomal proteins, including 110 differentially expressed proteins (DEPs) were identified by quantitative proteomics analyses. The bioinformatics analyses indicated that the upregulated proteins were enriched in the process of protein metabolic, whereas the downregulated proteins were largely involved in cell-cell adhesion organization. Surprisingly, 10 highly vital proteins (UBA52, PSMA1, PSMA5, PSMB6, PSMA7, PSMA4, PSMA3, PSMB1, PSMA6, and FGA) were filtered from DEPs, most of which are proteasome subunits. Moreover, the validation data confirmed that PSMA3 and PSMA6 were explicitly enriched in the serum derived exosomes from patients with mGC. Conclusion: The present study provided a comprehensive description of the serum exosome proteome of mGC patients, which could be an excellent resource for further studies of mGC.
Collapse
Affiliation(s)
- Xiao-Qing Ding
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe-Ying Wang
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Xia
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Xian Wang
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rong Pan
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hua Tong
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, Mehta M, Peterson JE, Munshi A, Ramesh R. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett 2020; 486:18-28. [PMID: 32439419 DOI: 10.1016/j.canlet.2020.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Exosomes are small membranous vesicles implicated in intercellular signalling. Through their uncanny ability to carry and deliver donor cellular cargo (biomolecules) to target cells, they exert a profound effect on the regular functioning of healthy cells and play a significant role in pathogenesis and progression of several diseases, including cancer. The composition and number of endogenously circulating exosomes frequently vary, which is often reflective of the pathophysiological status of the cell. Applicability of exosomes derived from normal cells as a drug carrier with or without modifying their intraluminal and surface components are generally tested. Conversely, exosomes also are reported to contribute to resistance towards several anti-cancer therapies. Therefore, it is necessary to carefully evaluate the role of exosomes in cancer progression, resistance and the potential use of exosomes as a delivery vehicle of cancer therapeutics. In this review, we summarize the recent advancements in the exploitation of exosomes as a drug delivery vehicle. We also discuss the role of exosomes in conferring resistance to anti-cancer therapeutics. While this review is focused on cancer, the exosome-based drug delivery and resistance is also applicable to other human diseases.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Akhil Srivastava
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Narsireddy Amreddy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohammad Razaq
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vipul Pareek
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rebaz Ahmed
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|