1
|
Ittiprasert W, Brindley PJ. CRISPR-based functional genomics for schistosomes and related flatworms. Trends Parasitol 2024; 40:1016-1028. [PMID: 39426911 PMCID: PMC11560492 DOI: 10.1016/j.pt.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
CRISPR genome editing is actively used for schistosomes and other flukes. The ability to genetically manipulate these flatworms enables deeper investigation of their (patho)biological nature. CRISPR gene knockout (KO) demonstrated that a liver fluke growth mediator contributes to disease progression. Genome safe harbor sites have been predicted in Schistosoma mansoni and targeted for transgene insertion. CRISPR-based diagnosis has been demonstrated for infection with schistosomes and Opisthorchis viverrini. This review charts the progress, and the state of play, and posits salient questions for the field to address. Derivation of heritably transgenic loss-of-function or gain-of-function lines is the next milestone.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
2
|
Casey MJ, Chan PP, Li Q, Zu JF, Jette CA, Kohler M, Myers BR, Stewart RA. A simple and scalable zebrafish model of Sonic hedgehog medulloblastoma. Cell Rep 2024; 43:114559. [PMID: 39078737 PMCID: PMC11404834 DOI: 10.1016/j.celrep.2024.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ∼30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe a zebrafish model of SHH MB using CRISPR to create mutant ptch1, the primary genetic driver of human SHH MB. In these animals, tumors rapidly arise in the cerebellum and resemble human SHH MB by histology and comparative onco-genomics. Similar to human patients, MB tumors with loss of both ptch1 and tp53 have aggressive tumor histology and significantly worse survival outcomes. The simplicity and scalability of the ptch1-crispant MB model makes it highly amenable to CRISPR-based genome-editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the gene encoding Grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- High-Throughput Genomics and Cancer Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ju-Fen Zu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
van den Bosch QCC, Kiliç E, Brosens E. Uveal Melanoma Zebrafish Xenograft Models Illustrate the Mutation Status-Dependent Effect of Compound Synergism or Antagonism. Invest Ophthalmol Vis Sci 2024; 65:26. [PMID: 39163035 PMCID: PMC11346061 DOI: 10.1167/iovs.65.10.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose Uveal melanoma (UM) is the most common primary intraocular malignancy with a high probability of metastatic disease. Although excellent treatment options for primary UM are available, therapy for metastatic disease remain limited. Drug discovery studies using mouse models have thus far failed to provide therapeutic solutions, highlighting the need for novel models. Here, we optimize zebrafish xenografts as a potential model for drug discovery by showcasing the behavior of multiple cell lines and novel findings on mutation-dependent compound synergism/antagonism using Z-Tada; an algorithm to objectively characterize output measurements. Methods Prognostic relevant primary (N = 4) and metastatic UM (N = 1) cell lines or healthy melanocytes (N = 2) were inoculated at three distinct inoculation sites. Standardized quantifications independent of inoculation site were obtained using Z-Tada; an algorithm to measure tumor burden and the number, size, and distance of disseminated tumor cells. Sequentially, we utilized this model to validate combinatorial synergism or antagonism seen in vitro. Results Detailed analysis of 691 zebrafish xenografts demonstrated perivitelline space inoculation provided robust data with high probability of cell dissemination. Cell lines with more invasive behavior (SF3B1mut and BAP1mut) behaved most aggressive in this model. Combinatorial drug treatment illustrated synergism or antagonism is mutation-dependent, which were confirmed in vivo. Combinatorial treatment differed per xenograft-model, as it either inhibited overall tumor burden or cell dissemination. Conclusions Perivitelline space inoculation provides robust zebrafish xenografts with the ability for high-throughput drug screening and robust data acquisition using Z-Tada. This model demonstrates that drug discovery for uveal melanoma must take mutational subclasses into account, especially in combinatorial treatment discoveries.
Collapse
Affiliation(s)
- Quincy C. C. van den Bosch
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Erwin Brosens
- Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Yu Q, Li W, Liang M, Li G, Wu Z, Long J, Yuan C, Mei W, Xia X. Preparation, Characterization, and Antioxidant Activities of Extracts from Amygdalus persica L. Flowers. Molecules 2024; 29:633. [PMID: 38338377 PMCID: PMC10856188 DOI: 10.3390/molecules29030633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
A novel water-soluble Amygdalus persica L. flowers polysaccharide (APL) was successfully isolated and purified from Amygdalus persica L. flowers by hot water extraction. Its chemical components and structure were analyzed by IR, GC-MS, and HPLC. APL consisted of rhamnose, arabinose, mannose and glucose in a molar ratio of 0.17:0.034:1.0:0.17 with an average molecular weight of approximately 208.53 kDa and 15.19 kDa. The antioxidant activity of APL was evaluated through radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 3-ethylbenzthiazoline-6-sulfonic acid (ABTS), Hydroxyl radical scavenging, Superoxide radical scavenging, and the reducing power activity was also determined in vitro. Besides, in vivo antioxidant experiment, zebrafish (Danio rerio) embryos were treated with different concentrations of APL and then exposed to LPS to induce oxidative stress. Treatment with APL at 50 or 100 µg/mL significantly reduced LPS-induced oxidative stress in the zebrafish, demonstrating the strong antioxidant activity of APL. Moreover, the effect of APL on zebrafish depigmentation was tested by analyzing the tyrosinase activity and melanin content of zebrafish embryos. APL showed a potential reduction in the total melanin content and tyrosinase activity after treatment. This work provided important information for developing a potential natural antioxidant in the field of cosmetics and food.
Collapse
Affiliation(s)
- Qingtao Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- Infinitus (China) Company Ltd., Guangzhou 510405, China; (W.L.); (M.L.); (J.L.)
| | - Wenzhi Li
- Infinitus (China) Company Ltd., Guangzhou 510405, China; (W.L.); (M.L.); (J.L.)
| | - Ming Liang
- Infinitus (China) Company Ltd., Guangzhou 510405, China; (W.L.); (M.L.); (J.L.)
| | - Guohu Li
- Guangzhou Ruby Biotechnology Co., Ltd., Guangzhou 510006, China; (G.L.); (C.Y.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Zhuoyan Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- Guangdong Province Engineering Technology Centre for Molecular Probes and Biomedicine Imaging, Guangzhou 510006, China
| | - Jieyi Long
- Infinitus (China) Company Ltd., Guangzhou 510405, China; (W.L.); (M.L.); (J.L.)
| | - Chanling Yuan
- Guangzhou Ruby Biotechnology Co., Ltd., Guangzhou 510006, China; (G.L.); (C.Y.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- Guangdong Province Engineering Technology Centre for Molecular Probes and Biomedicine Imaging, Guangzhou 510006, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300000, China
| |
Collapse
|
5
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
6
|
Subramanian S. Zebrafish as a model organism - can a fish mimic human? J Basic Clin Physiol Pharmacol 2023; 34:559-575. [PMID: 34662932 DOI: 10.1515/jbcpp-2021-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
From pre-historic era, all scientific discoveries have evolved around a concept - THINK BIG but for a change zebrafish as a model organism in research had managed to halt the entire medical community and made us realize that it's time to think small. From a barely imagined being in research few years ago to around 4,000 publications in just last year, zebrafish has definitely come a long way. Through these tiny fish, scientists have managed to find genes that caused human diseases and have also developed various specific models to know more about the pathology behind such diseases. This review will focus on zebrafish as a model organism from the time it was introduced to the most novel targets with particular emphasis on central nervous system (CNS) as it is rapidly evolving branch in zebrafish research these days. This review will try to shed light on the early stages of zebrafish as a model organism and will try to cover the journey of it developing as a successful model organism to map many diseases like diabetes, Alzheimer's and autism describing the rationale for using this specific model and briefly the techniques under each category and finally will summarize the pros and cons of the model with its expected future directions.
Collapse
|
7
|
Wu M, Yang Y, Cao M, Liu T, Tian Y, Zhao Z, Zhu B. Drug-Induced Cardiotoxicity in Children During the Past 30 Years: A Bibliometric Study and Visualization Analysis. Med Sci Monit 2023; 29:e938673. [PMID: 36806177 PMCID: PMC9951546 DOI: 10.12659/msm.938673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Drug-induced cardiotoxicity (DICT) is one of the most serious adverse drug reactions, which is an important safety issue in drug development and clinical practice. This study aimed to summarize the knowledge structure and to detect emerging trends, and provide ideas for future research on DICT in children using bibliometric methods. MATERIAL AND METHODS All publications on DICT in children were retrieved through the Web of Science Core Collection up to April 20, 2022. The document type was restricted to articles with the language set to English. CiteSpace and VOSviewer were used to conduct this bibliometric analysis. RESULTS A total of 298 articles were included, and the annual publications decreased since 2021. The United States was the leading country with the most publications (117), the highest centrality (0.39), and total citations (4055). The most influential institution was the University of British Columbia, while Carleton BC and Rassekh SR, both from Canada, were the most productive authors, but there was no leader in this field. The keywords with both high frequency and high centrality after excluding "cardiotoxicity" and "children" were acute lymphoblastic leukemia (Freq=43, Central=0.15), childhood cancer (Freq=42, Central=0.13), toxicity (Freq=33, Central=0.16), and breast cancer (Freq=29, Central=0.19). "Adriamycin cardiotoxicity" was the first burst keyword, while "childhood cancer", "oxidative stress", and "cardiac dysfunction" were emerging research hotspots. CONCLUSIONS Attention to DICT in children was insufficient. This study serves as a breakthrough point, providing a comprehensive overview of the knowledge structure, development landscape, and future opportunities in this field.
Collapse
Affiliation(s)
- Mingfen Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yang Yang
- Outpatient Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Teng Liu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yue Tian
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
8
|
Morris EK, Daignault-Mill S, Stehbens SJ, Genovesi LA, Lagendijk AK. Addressing blood-brain-tumor-barrier heterogeneity in pediatric brain tumors with innovative preclinical models. Front Oncol 2023; 13:1101522. [PMID: 36776301 PMCID: PMC9909546 DOI: 10.3389/fonc.2023.1101522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Brain tumors represent the leading cause of disease-related mortality and morbidity in children, with effective treatments urgently required. One factor limiting the effectiveness of systemic therapy is the blood-brain-barrier (BBB), which limits the brain penetration of many anticancer drugs. BBB integrity is often compromised in tumors, referred to as the blood-brain-tumor-barrier (BBTB), and the impact of a compromised BBTB on the therapeutic sensitivity of brain tumors has been clearly shown for a few selected agents. However, the heterogeneity of barrier alteration observed within a single tumor and across distinct pediatric tumor types represents an additional challenge. Herein, we discuss what is known regarding the heterogeneity of tumor-associated vasculature in pediatric brain tumors. We discuss innovative and complementary preclinical model systems that will facilitate real-time functional analyses of BBTB for all pediatric brain tumor types. We believe a broader use of these preclinical models will enable us to develop a greater understanding of the processes underlying tumor-associated vasculature formation and ultimately more efficacious treatment options.
Collapse
Affiliation(s)
- Elysse K. Morris
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Sheena Daignault-Mill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha J. Stehbens
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Laura A. Genovesi
- The University of Queensland Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| | - Anne K. Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| |
Collapse
|
9
|
Li X, Li M. The application of zebrafish patient-derived xenograft tumor models in the development of antitumor agents. Med Res Rev 2023; 43:212-236. [PMID: 36029178 DOI: 10.1002/med.21924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/09/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
The cost of antitumor drug development is enormous, yet the clinical outcomes are less than satisfactory. Therefore, it is of great importance to develop effective drug screening methods that enable accurate, rapid, and high-throughput discovery of lead compounds in the process of preclinical antitumor drug research. An effective solution is to use the patient-derived xenograft (PDX) tumor animal models, which are applicable for the elucidation of tumor pathogenesis and the preclinical testing of novel antitumor compounds. As a promising screening model organism, zebrafish has been widely applied in the construction of the PDX tumor model and the discovery of antineoplastic agents. Herein, we systematically survey the recent cutting-edge advances in zebrafish PDX models (zPDX) for studies of pathogenesis mechanisms and drug screening. In addition, the techniques used in the construction of zPDX are summarized. The advantages and limitations of the zPDX are also discussed in detail. Finally, the prospects of zPDX in drug discovery, translational medicine, and clinical precision medicine treatment are well presented.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Shedding Light on the Drug-Target Prediction of the Anti-Inflammatory Peptide TnP with Bioinformatics Tools. Pharmaceuticals (Basel) 2022; 15:ph15080994. [PMID: 36015142 PMCID: PMC9412873 DOI: 10.3390/ph15080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Peptide–protein interactions are involved in various fundamental cellular functions, and their identification is crucial for designing efficacious peptide therapeutics. Drug–target interactions can be inferred by in silico prediction using bioinformatics and computational tools. We patented the TnP family of synthetic cyclic peptides, which is in the preclinical stage of developmental studies for chronic inflammatory diseases such as multiple sclerosis. In an experimental autoimmune enceph-alomyelitis model, we found that TnP controls neuroinflammation and prevents demyelination due to its capacity to cross the blood–brain barrier and to act in the central nervous system blocking the migration of inflammatory cells responsible for neuronal degeneration. Therefore, the identification of potential targets for TnP is the objective of this research. In this study, we used bioinformatics and computational approaches, as well as bioactivity databases, to evaluate TnP–target prediction for proteins that were not experimentally tested, specifically predicting the 3D structure of TnP and its biochemical characteristics, TnP–target protein binding and docking properties, and dynamics of TnP competition for the protein/receptor complex interaction, construction of a network of con-nectivity and interactions between molecules as a result of TnP blockade, and analysis of similarities with bioactive molecules. Based on our results, integrins were identified as important key proteins and considered responsible to regulate TnP-governed pharmacological effects. This comprehensive in silico study will help to understand how TnP induces its anti-inflammatory effects and will also facilitate the identification of possible side effects, as it shows its link with multiple biologically important targets in humans.
Collapse
|
11
|
Kwiatkowska I, Hermanowicz JM, Iwinska Z, Kowalczuk K, Iwanowska J, Pawlak D. Zebrafish—An Optimal Model in Experimental Oncology. Molecules 2022; 27:molecules27134223. [PMID: 35807468 PMCID: PMC9268704 DOI: 10.3390/molecules27134223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 02/02/2023] Open
Abstract
A thorough understanding of cancer pathogenesis is a necessary step in the development of more effective and safer therapy. However, due to the complexity of the process and intricate interactions, studying tumor development is an extremely difficult and challenging task. In bringing this issue closer, different scientific models with various advancement levels are helpful. Cell cultures is a system that is too simple and does not allow for multidirectional research. On the other hand, rodent models, although commonly used, are burdened with several limitations. For this reason, new model organisms that will allow for the studying of carcinogenesis stages and factors reliably involved in them are urgently sought after. Danio rerio, an inconspicuous fish endowed with unique features, is gaining in importance in the world of scientific research. Including it in oncological research brings solutions to many challenges afflicting modern medicine. This article aims to illustrate the usefulness of Danio rerio as a model organism which turns out to be a powerful and unique tool for studying the stages of carcinogenesis and solving the hitherto incomprehensible processes that lead to the development of the disease.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Correspondence: ; Tel./Fax: +48-8574-856-01
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Zaneta Iwinska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Jolanta Iwanowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| |
Collapse
|
12
|
Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nat Commun 2022; 13:3435. [PMID: 35701478 PMCID: PMC9198099 DOI: 10.1038/s41467-022-31172-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/08/2022] [Indexed: 12/18/2022] Open
Abstract
Base Editors are emerging as an innovative technology to introduce point mutations in complex genomes. So far, the requirement of an NGG Protospacer Adjacent Motif (PAM) at a suitable position often limits the base editing possibility to model human pathological mutations in animals. Here we show that, using the CBE4max-SpRY variant recognizing nearly all PAM sequences, we could introduce point mutations for the first time in an animal model with high efficiency, thus drastically increasing the base editing possibilities. With this near PAM-less base editor we could simultaneously mutate several genes and we developed a co-selection method to identify the most edited embryos based on a simple visual screening. Finally, we apply our method to create a zebrafish model for melanoma predisposition based on the simultaneous base editing of multiple genes. Altogether, our results considerably expand the Base Editor application to introduce human disease-causing mutations in zebrafish. Base Editors are emerging as an innovative technology to introduce point mutations in complex genomes. Here the authors describe a near PAM-less base editor and its application in zebrafish to efficiently create disease models harbouring specific point mutations.
Collapse
|
13
|
Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci 2022; 15:818696. [PMID: 35706426 PMCID: PMC9190727 DOI: 10.3389/fnmol.2022.818696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brain tumors are a large and heterogeneous group of neoplasms that affect the central nervous system and include some of the deadliest cancers. Almost all the conventional and new treatments fail to hinder tumoral growth of the most malignant brain tumors. This is due to multiple factors, such as intra-tumor heterogeneity, the microenvironmental properties of the human brain, and the lack of reliable models to test new therapies. Therefore, creating faithful models for each tumor and discovering tailored treatments pose great challenges in the fight against brain cancer. Over the years, different types of models have been generated, and, in this review, we investigated the advantages and disadvantages of the models currently used.
Collapse
Affiliation(s)
- Francesco Antonica
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Luca Tiberi,
| |
Collapse
|
14
|
Larsson S, Kettunen P, Carén H. Orthotopic Transplantation of Human Paediatric High-Grade Glioma in Zebrafish Larvae. Brain Sci 2022; 12:brainsci12050625. [PMID: 35625011 PMCID: PMC9139401 DOI: 10.3390/brainsci12050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Brain tumours are the most common cause of death among children with solid tumours, and high-grade gliomas (HGG) are among the most devastating forms with very poor outcomes. In the search for more effective treatments for paediatric HGG, there is a need for better experimental models. To date, there are no xenograft zebrafish models developed for human paediatric HGG; existing models rely on adult cells. The use of paediatric models is of great importance since it is well known that the genetic and epigenetic mechanisms behind adult and paediatric disease differ greatly. In this study, we present a clinically relevant in vivo model based on paediatric primary glioma stem cell (GSC) cultures, which after orthotopic injection into the zebrafish larvae, can be monitored using confocal imaging over time. We show that cells invade the brain tissue and can be followed up to 8 days post-injection while they establish in the fore/mid brain. This model offers an in vivo system where tumour invasion can be monitored and drug treatments quickly be evaluated. The possibility to monitor patient-specific cells has the potential to contribute to a better understanding of cellular behaviour and personalised treatments in the future.
Collapse
Affiliation(s)
- Susanna Larsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
- Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Correspondence: ; Tel.: +46-31-786-3838
| |
Collapse
|
15
|
Nam MK, Moon JM, Kim GY, Kim SM, Rhim H. The novel human HtrA2 ortholog in zebrafish: New molecular insight and challenges into the imbalance of homeostasis. Gene 2022; 819:146263. [PMID: 35121025 DOI: 10.1016/j.gene.2022.146263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
Abstract
High temperature requirement A2 (HtrA2) contributes to regulating mitochondrial quality control and maintaining the balance between the death and survival of cells and living organisms. However, the molecular mechanism of HtrA2 in physiological and pathophysiological processes remains unclear. HtrA2 exhibits multifaceted characteristics according to the expression levels and acts opposite functions depending on its subcellular localization. Thus, innovative technologies and systems that can be freely manipulated at the quantitative, biochemical, molecular and cellular levels are needed to address not only the challenges faced by HtrA2 research but also the general obstacles to protein research. Here, we are the first to identify zebrafish HtrA2 (zHtrA2) as the true ortholog of human HtrA2 (hHtrA2), by in silico sequence analysis of genomic DNA and molecular biological techniques, which is highly conserved structurally and functionally as a serine protease and cell death regulator. The zHtrA2 protein is primarily localized in the mitochondria, where alanine-exposed mature zHtrA2 ((A)-zHtrA2) is generated by removing 111 residues at the N-terminus of pro-zHtrA2. The (A)-zHtrA2 released from the mitochondria into the cytosol induces the caspase cascade by binding to and inhibiting hXIAP, a cognate partner of hHtrA2. Notably, zHtrA2 has well conserved properties of serine protease that specifically cleaves hParkin, a cognate substrate of hHtrA2. Interestingly, cytosolic (M)-zHtrA2, which does not bind hXIAP, induces atypical cell death in a serine protease-dependent manner, as occurs in hHtrA2. Thus, the zebrafish-zHtrA2 system can be used to clarify the crucial role of HtrA2 in maintaining the survival of living organisms and provide an opportunity to develop novel therapeutics for HtrA2-associated diseases, such as neurodegenerative diseases and cancer, which are caused by dysregulation of HtrA2.
Collapse
Affiliation(s)
- Min-Kyung Nam
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea.
| | - Jeong-Mi Moon
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Goo-Young Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sung Min Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Hyangshuk Rhim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea.
| |
Collapse
|
16
|
Sarmiento BE, Callegari S, Ghotme KA, Akle V. Patient-Derived Xenotransplant of CNS Neoplasms in Zebrafish: A Systematic Review. Cells 2022; 11:cells11071204. [PMID: 35406768 PMCID: PMC8998145 DOI: 10.3390/cells11071204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma and neuroblastoma are the most common central nervous system malignant tumors in adult and pediatric populations. Both are associated with poor survival. These tumors are highly heterogeneous, having complex interactions among different cells within the tumor and with the tumor microenvironment. One of the main challenges in the neuro-oncology field is achieving optimal conditions to evaluate a tumor’s molecular genotype and phenotype. In this respect, the zebrafish biological model is becoming an excellent alternative for studying carcinogenic processes and discovering new treatments. This review aimed to describe the results of xenotransplantation of patient-derived CNS tumors in zebrafish models. The reviewed studies show that it is possible to maintain glioblastoma and neuroblastoma primary cell cultures and transplant the cells into zebrafish embryos. The zebrafish is a suitable biological model for understanding tumor progression and the effects of different treatments. This model offers new perspectives in providing personalized care and improving outcomes for patients living with central nervous system tumors.
Collapse
Affiliation(s)
- Beatriz E. Sarmiento
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
| | - Santiago Callegari
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
| | - Kemel A. Ghotme
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia;
- Translational Neuroscience Research Lab, Faculty of Medicine, Universidad de La Sabana, Chía 250001, Colombia
| | - Veronica Akle
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
- Correspondence:
| |
Collapse
|
17
|
Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discov Today 2022; 27:1513-1522. [DOI: 10.1016/j.drudis.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
|
18
|
Lai CY, Yeh KY, Liu BF, Chang TM, Chang CH, Liao YF, Liu YW, Her GM. MicroRNA-21 Plays Multiple Oncometabolic Roles in Colitis-Associated Carcinoma and Colorectal Cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α Signaling Pathways in Zebrafish. Cancers (Basel) 2021; 13:5565. [PMID: 34771727 PMCID: PMC8583575 DOI: 10.3390/cancers13215565] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Patients with inflammatory bowel disease (IBD) have a high risk of developing CRC. Inflammatory cytokines are regulated by complex gene networks and regulatory RNAs, especially microRNAs. MicroRNA-21 (miR-21) is amongst the most frequently upregulated microRNAs in inflammatory responses and cancer development. miR-21 has become a target for genetic and pharmacological regulation in various diseases. However, the association between inflammation and tumorigenesis in the gut is largely unknown. Hence, in this study, we generated a zebrafish model (ImiR-21) with inducible overexpression of miR-21 in the intestine. The results demonstrate that miR-21 can induce CRC or colitis-associated cancer (CAC) in ImiR-21 through the PI3K/AKT, PDCD4/TNF-α, and IL-6/STAT3 signaling network. miR-21 activated the PI3K/AKT and NF-κB signaling pathways, leading to initial inflammation; thereafter, miR-21 and TNF-α repressed PDCD4 and its tumor suppression activity. Eventually, active STAT3 stimulated a strong inflammatory response and activated the invasion/metastasis process of tumor cells. Hence, our findings indicate that miR-21 is critical for the development of CRC/CAC via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling networks.
Collapse
Affiliation(s)
- Chi-Yu Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| | - Kun-Yun Yeh
- Division of Hemato-Oncology, Department of Internal Medicine, Chang-Chung Memorial Hospital, Keelung 204, Taiwan;
| | - Bi-Feng Liu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| | - Tzu-Ming Chang
- Division of Surgical Oncology, Department of Surgery, Cheng Hsin General Hospital, Taipei 112, Taiwan; (T.-M.C.); (C.-H.C.)
| | - Chuan-Hsun Chang
- Division of Surgical Oncology, Department of Surgery, Cheng Hsin General Hospital, Taipei 112, Taiwan; (T.-M.C.); (C.-H.C.)
- Division of General Surgery, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Yung-Feng Liao
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd., Taipei 11529, Taiwan;
| | - Yi-Wen Liu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| |
Collapse
|
19
|
Hitawala G, Jain E, Castellanos L, Garimella R, Akku R, Chamavaliyathil AK, Irfan H, Jaiswal V, Quinonez J, Dakroub M, Hanif M, Baloch AH, Gomez IS, Dylewski J. Pediatric Chemotherapy Drugs Associated With Cardiotoxicity. Cureus 2021; 13:e19658. [PMID: 34976454 PMCID: PMC8679581 DOI: 10.7759/cureus.19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/05/2022] Open
Abstract
Pediatric cancers are a common cause of childhood morbidity. As a result, chemotherapeutic regimens have been designed to target childhood cancers. These medications are necessary to treat pediatric cancers, however, oncology management options are accompanied by multiple negative and potentially fatal adverse effects. Although anthracyclines are the most commonly used chemotherapeutic agents associated with cardiotoxicity, we also explore other chemotherapeutic drugs used in children that can potentially affect the heart. Genetic variations resulting in single nucleotide polymorphism (SNP) have the propensity to modify the cardiotoxic effects of the chemotherapy drugs. The clinical presentation of the cardiac effects can vary from arrhythmias and heart failure to completely asymptomatic. A range of imaging studies and laboratory investigations can protect the heart from severe outcomes. The physiology of the heart and the effect of drugs in children vary vividly from adults; therefore, it is crucial to study the cardiotoxic effect of chemotherapy drugs in the pediatric population. This review highlights the potential contributing factors for cardiotoxicity in the pediatric population and discusses the identification and management options.
Collapse
Affiliation(s)
- Gazala Hitawala
- Internal Medicine, Jersey City (JC) Medical Center, Orlando, USA
| | - Esha Jain
- Medicine, American University of Antigua, St. John's, ATG
| | | | | | - Radhika Akku
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adila K Chamavaliyathil
- Pediatrics, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Huma Irfan
- Research, Larkin Community Hospital, South Miami, USA
| | | | - Jonathan Quinonez
- Neurology/Osteopathic Neuromuscular Medicine, Larkin Community Hospital, Miami, USA
| | - Maher Dakroub
- Hematology and Oncology, Larkin Community Hospital, South Miami, USA
| | - Muhammad Hanif
- Internal Medicine, Khyber Medical College Peshawar, Hayatabad Medical Complex, Peshawar, PAK
| | - Ali H Baloch
- Research, University of Maryland Medical Center, Baltimore, USA
| | - Ivan S Gomez
- Cardiology, Larkin Community Hospital, South Miami, USA
| | - John Dylewski
- Cardiology, Larkin Community Hospital, South Miami, USA
| |
Collapse
|
20
|
Barbet V, Broutier L. Future Match Making: When Pediatric Oncology Meets Organoid Technology. Front Cell Dev Biol 2021; 9:674219. [PMID: 34327198 PMCID: PMC8315550 DOI: 10.3389/fcell.2021.674219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Unlike adult cancers that frequently result from the accumulation in time of mutational “hits” often linked to lifestyle, childhood cancers are emerging as diseases of dysregulated development through massive epigenetic alterations. The ability to reconstruct these differences in cancer models is therefore crucial for better understanding the uniqueness of pediatric cancer biology. Cancer organoids (i.e., tumoroids) represent a promising approach for creating patient-derived in vitro cancer models that closely recapitulate the overall pathophysiological features of natural tumorigenesis, including intra-tumoral heterogeneity and plasticity. Though largely applied to adult cancers, this technology is scarcely used for childhood cancers, with a notable delay in technological transfer. However, tumoroids could provide an unprecedented tool to unravel the biology of pediatric cancers and improve their therapeutic management. We herein present the current state-of-the-art of a long awaited and much needed matchmaking.
Collapse
Affiliation(s)
- Virginie Barbet
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| |
Collapse
|
21
|
Miao KZ, Kim GY, Meara GK, Qin X, Feng H. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Front Cell Dev Biol 2021; 9:660969. [PMID: 34095125 PMCID: PMC8173129 DOI: 10.3389/fcell.2021.660969] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The future of improved immunotherapy against cancer depends on an in-depth understanding of the dynamic interactions between the immune system and tumors. Over the past two decades, the zebrafish has served as a valuable model system to provide fresh insights into both the development of the immune system and the etiologies of many different cancers. This well-established foundation of knowledge combined with the imaging and genetic capacities of the zebrafish provides a new frontier in cancer immunology research. In this review, we provide an overview of the development of the zebrafish immune system along with a side-by-side comparison of its human counterpart. We then introduce components of the adaptive immune system with a focus on their roles in the tumor microenvironment (TME) of teleosts. In addition, we summarize zebrafish models developed for the study of cancer and adaptive immunity along with other available tools and technology afforded by this experimental system. Finally, we discuss some recent research conducted using the zebrafish to investigate adaptive immune cell-tumor interactions. Without a doubt, the zebrafish will arise as one of the driving forces to help expand the knowledge of tumor immunity and facilitate the development of improved anti-cancer immunotherapy in the foreseeable future.
Collapse
Affiliation(s)
- Kelly Z Miao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace Y Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace K Meara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Xiaodan Qin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
22
|
Preclinical In Vivo Modeling of Pediatric Sarcoma-Promises and Limitations. J Clin Med 2021; 10:jcm10081578. [PMID: 33918045 PMCID: PMC8069549 DOI: 10.3390/jcm10081578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pediatric sarcomas are an extremely heterogeneous group of genetically distinct diseases. Despite the increasing knowledge on their molecular makeup in recent years, true therapeutic advancements are largely lacking and prognosis often remains dim, particularly for relapsed and metastasized patients. Since this is largely due to the lack of suitable model systems as a prerequisite to develop and assess novel therapeutics, we here review the available approaches to model sarcoma in vivo. We focused on genetically engineered and patient-derived mouse models, compared strengths and weaknesses, and finally explored possibilities and limitations to utilize these models to advance both biological understanding as well as clinical diagnosis and therapy.
Collapse
|
23
|
Li Z, Langhans SA. In Vivo and Ex Vivo Pediatric Brain Tumor Models: An Overview. Front Oncol 2021; 11:620831. [PMID: 33869004 PMCID: PMC8047472 DOI: 10.3389/fonc.2021.620831] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
After leukemia, tumors of the brain and spine are the second most common form of cancer in children. Despite advances in treatment, brain tumors remain a leading cause of death in pediatric cancer patients and survivors often suffer from life-long consequences of side effects of therapy. The 5-year survival rates, however, vary widely by tumor type, ranging from over 90% in more benign tumors to as low as 20% in the most aggressive forms such as glioblastoma. Even within historically defined tumor types such as medulloblastoma, molecular analysis identified biologically heterogeneous subgroups each with different genetic alterations, age of onset and prognosis. Besides molecularly driven patient stratification to tailor disease risk to therapy intensity, such a diversity demonstrates the need for more precise and disease-relevant pediatric brain cancer models for research and drug development. Here we give an overview of currently available in vitro and in vivo pediatric brain tumor models and discuss the opportunities that new technologies such as 3D cultures and organoids that can bridge limitations posed by the simplicity of monolayer cultures and the complexity of in vivo models, bring to accommodate better precision in drug development for pediatric brain tumors.
Collapse
Affiliation(s)
| | - Sigrid A. Langhans
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
24
|
Corsinovi D, Usai A, Sarlo MD, Giannaccini M, Ori M. Zebrafish Avatar to Develop Precision Breast Cancer Therapies. Anticancer Agents Med Chem 2021; 22:748-759. [PMID: 33797388 DOI: 10.2174/1871520621666210402111634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Zebrafish (Danio rerio) is a vertebrate that has become a popular alternative model for the cellular and molecular study of human tumors and for drug testing and validating approaches. Notably, zebrafish embryos, thanks to their accessibility, allow rapid collection of in vivo results prodromal to validation in the murine models in respect to the 3R principles. The generation of tumor xenograft in zebrafish embryos and larvae, or zebrafish avatar, represents a unique opportunity to study tumor growth, angiogenesis, cell invasion and metastatic dissemination, interaction between tumor and host in vivo avoiding immunogenic rejection, representing a promising platform for the translational research and personalized therapies. OBJECTIVE In this mini-review we report recent advances in breast cancer research and drug testing that took advantage of the zebrafish xenograft model using both breast cancer cell lines and patient's biopsy. CONCLUSION Patient derived xenograft, together with the gene editing, the omics biotechnology, the in vivo time lapse imaging and the high-throughput screening that are already set up and largely used in zebrafish, could represent a step forward towards precision and personalized medicine in the breast cancer research field.
Collapse
Affiliation(s)
- Debora Corsinovi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa. Italy
| | - Alice Usai
- Department of Biology, University of Pisa, Pisa. Italy
| | | | | | - Michela Ori
- Department of Biology, University of Pisa, Pisa. Italy
| |
Collapse
|
25
|
Amatruda JF. Modeling the developmental origins of pediatric cancer to improve patient outcomes. Dis Model Mech 2021; 14:14/2/dmm048930. [PMID: 33619212 PMCID: PMC7927656 DOI: 10.1242/dmm.048930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the treatment of children and adolescents with cancer, multimodal approaches combining surgery, chemotherapy and radiation can cure most patients, but may cause lifelong health problems in survivors. Current therapies only modestly reflect increased knowledge about the molecular mechanisms of these cancers. Advances in next-generation sequencing have provided unprecedented cataloging of genetic aberrations in tumors, but understanding how these genetic changes drive cellular transformation, and how they can be effectively targeted, will require multidisciplinary collaboration and preclinical models that are truly representative of the in vivo environment. Here, I discuss some of the key challenges in pediatric cancer from my perspective as a physician-scientist, and touch on some promising new approaches that have the potential to transform our understanding of these diseases. Summary: This Perspective discusses the special features that make it challenging to develop new therapies for pediatric cancers, and the ways in which collaboration centered on improved models can meet these challenges.
Collapse
Affiliation(s)
- James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
26
|
Loveless R, Shay C, Teng Y. Unveiling Tumor Microenvironment Interactions Using Zebrafish Models. Front Mol Biosci 2021; 7:611847. [PMID: 33521055 PMCID: PMC7841114 DOI: 10.3389/fmolb.2020.611847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a rich and active arena that is strategically evolved overtime by tumors to promote their survival and dissemination. Over the years, attention has been focused to characterize and identify the tumor-supporting roles and subsequent targeting potentials of TME components. Nevertheless, recapitulating the human TME has proved inherently challenging, leaving much to be explored. In this regard, in vivo model systems like zebrafish, with its optical clarity, ease of genetic manipulation, and high engraftment, have proven to be indispensable for TME modeling and investigation. In this review, we discuss the recent ways by which zebrafish models have lent their utility to provide new insights into the various cellular and molecular mechanisms driving TME dynamics and tumor support. Specifically, we report on innate immune cell interactions, cytokine signaling, metastatic plasticity, and other processes within the metastatic cascade. In addition, we reflect on the arrival of adult zebrafish models and the potential of patient-derived xenografts.
Collapse
Affiliation(s)
- Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Chloe Shay
- Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, United States
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, United States
| |
Collapse
|