1
|
Owen D, Ben-Shachar R, Feliciano J, Gai L, Beauchamp KA, Rivers Z, Hockenberry AJ, Harrison G, Guittar J, Catela C, Parsons J, Cohen E, Sasser K, Nimeiri H, Guinney J, Patel J, Morgensztern D. Actionable Structural Variant Detection via RNA-NGS and DNA-NGS in Patients With Advanced Non-Small Cell Lung Cancer. JAMA Netw Open 2024; 7:e2442970. [PMID: 39495511 PMCID: PMC11536281 DOI: 10.1001/jamanetworkopen.2024.42970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
Importance The National Comprehensive Cancer Network (NCCN) guidelines for non-small cell lung cancer suggest that RNA next-generation sequencing (NGS) may improve the detection of fusions and splicing variants compared with DNA-NGS alone. However, there is limited adoption of RNA-NGS in routine oncology clinical care today. Objective To analyze clinical evidence from a diverse cohort of patients with advanced lung adenocarcinoma and compare the detection of NCCN-recommended actionable structural variants (aSVs; fusions and splicing variants) via concurrent DNA and RNA-NGS vs DNA-NGS alone. Design, Setting, and Participants This multisite, retrospective cohort study examined patients sequenced between February 2021 and October 2023 within the deidentified, Tempus multimodal database, consisting of linked molecular and clinical data. Participants included patients with advanced lung adenocarcinoma and sufficient tissue sample quantities for both RNA-NGS and DNA-NGS testing. Exposures Received results from RNA-NGS and DNA-NGS solid-tissue profiling assays. Main Outcomes and Measures Detection rates of NCCN guideline-based structural variants (ALK, ROS1, RET and NTRK1/2/3 fusions, as well as MET exon 14 skipping splicing alterations) found uniquely by RNA-NGS. Results In the evaluable cohort of 5570 patients, median (IQR) age was 67.8 (61.3-75.4) years, and 2989 patients (53.7%) were female. The prevalence of actionable structural variants detected by either RNA-NGS or DNA-NGS was 8.8% (n = 491), with 86.7% (n = 426) of these detected by DNA-NGS. Concurrent RNA-NGS and DNA-NGS identified 15.3% more patients harboring aSVs compared with DNA-NGS alone (491 vs 426 patients, respectively), including 14.3% more patients harboring actionable fusions (376 vs 329 patients) and 18.6% more patients harboring MET exon 14 skipping alterations (115 vs 97 patients). There was no significant association between the assay used for aSV detection and aSV-targeted therapeutic adoption or clinical outcome. Emerging structural variants (eSVs) were found to have a combined prevalence to be 0.7%, with only 47.5% of eSVs detected by DNA-NGS. Conclusions and Relevance In this cohort study, the detection of structural variants via concurrent RNA-NGS and DNA-NGS was higher across multiple NCCN-guideline recommended biomarkers compared with DNA-NGS alone, suggesting that RNA-NGS should be routinely implemented in the care of patients with advanced NSCLC.
Collapse
Affiliation(s)
- Dwight Owen
- Ohio State University School of Medicine, Columbus
| | | | | | - Lisa Gai
- Tempus AI Inc, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | - Jyoti Patel
- Northwestern University School of Medicine, Chicago, Illinois
| | | |
Collapse
|
2
|
Nokin MJ, Darbo E, Richard E, San José S, de Hita S, Prouzet-Mauleon V, Turcq B, Gerardelli L, Crake R, Velasco V, Koopmansch B, Lambert F, Xue JY, Sang B, Horne J, Ziemons E, Villanueva A, Blomme A, Herfs M, Cataldo D, Calvayrac O, Porporato P, Nadal E, Lito P, Jänne PA, Ricciuti B, Awad MM, Ambrogio C, Santamaría D. In vivo vulnerabilities to GPX4 and HDAC inhibitors in drug-persistent versus drug-resistant BRAF V600E lung adenocarcinoma. Cell Rep Med 2024; 5:101663. [PMID: 39094577 PMCID: PMC11384943 DOI: 10.1016/j.xcrm.2024.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
The current targeted therapy for BRAFV600E-mutant lung cancer consists of a dual blockade of RAF/MEK kinases often combining dabrafenib/trametinib (D/T). This regimen extends survival when compared to single-agent treatments, but disease progression is unavoidable. By using whole-genome CRISPR screening and RNA sequencing, we characterize the vulnerabilities of both persister and D/T-resistant cellular models. Oxidative stress together with concomitant induction of antioxidant responses is boosted by D/T treatment. However, the nature of the oxidative damage, the choice of redox detoxification systems, and the resulting therapeutic vulnerabilities display stage-specific differences. Persister cells suffer from lipid peroxidation and are sensitive to ferroptosis upon GPX4 inhibition in vivo. Biomarkers of lipid peroxidation are detected in clinical samples following D/T treatment. Acquired alterations leading to mitogen-activated protein kinase (MAPK) reactivation enhance cystine transport to boost GPX4-independent antioxidant responses. Similarly to BRAFV600E-mutant melanoma, histone deacetylase (HDAC) inhibitors decrease D/T-resistant cell viability and extend therapeutic response in vivo.
Collapse
Affiliation(s)
- Marie-Julie Nokin
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Elodie Darbo
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France
| | - Elodie Richard
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France
| | - Sonia San José
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Sergio de Hita
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Valérie Prouzet-Mauleon
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France; CRISP'edit, TBMCore, University of Bordeaux, CNRS UAR 3427, INSERM US05, 33000 Bordeaux, France
| | - Béatrice Turcq
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, 33000 Bordeaux, France; CRISP'edit, TBMCore, University of Bordeaux, CNRS UAR 3427, INSERM US05, 33000 Bordeaux, France
| | - Laura Gerardelli
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Rebekah Crake
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Valérie Velasco
- Department of Biopathology, Institut Bergonié, 33076 Bordeaux, France
| | - Benjamin Koopmansch
- Department of Human Genetics, University Hospital Center of Liege, 4000 Liege, Belgium
| | - Frederic Lambert
- Department of Human Genetics, University Hospital Center of Liege, 4000 Liege, Belgium
| | - Jenny Y Xue
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ben Sang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie Horne
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liege, 4000 Liege, Belgium
| | - Eric Ziemons
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liege, 4000 Liege, Belgium
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO); Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Stem Cells, University of Liege, 4000 Liege, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Didier Cataldo
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Olivier Calvayrac
- Cancer Research Centre of Toulouse, INSERM UMR1037, CNRS UMR5071, 31100 Toulouse, France
| | - Paolo Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Ernest Nadal
- Molecular Mechanisms of Cancer Program, Department of Medical Oncology, Catalan Institute of Oncology (ICO), Preclinical and Experimental Research in Thoracic Tumors (PReTT) Group, Oncobell Program, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Biagio Ricciuti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mark M Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy.
| | - David Santamaría
- University of Bordeaux, INSERM U1218, ACTION Laboratory, IECB, 33600 Pessac, France; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
3
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
4
|
Ruiz G, Enrico D, Mahmoud YD, Ruiz A, Cantarella MF, Leguina L, Barberis M, Beña A, Brest E, Starapoli S, Mendoza Bertelli A, Tsou F, Pupareli C, Coppola MP, Scocimarro A, Sena S, Levit P, Perfetti A, Aman E, Girotti MR, Arrieta O, Martín C, Salanova R. Association of PD-L1 expression with driver gene mutations and clinicopathological characteristics in non-small cell lung cancer: A real-world study of 10 441 patients. Thorac Cancer 2024; 15:895-905. [PMID: 38456253 PMCID: PMC11016406 DOI: 10.1111/1759-7714.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Programmed death ligand-1 (PD-L1) expression is a well-known predictive biomarker of response to immune checkpoint blockade in non-small cell lung cancer (NSCLC). However, there is limited evidence of the relationship between PD-L1 expression, clinicopathological features, and their association with major driver mutations in NSCLC patients in Latin America. METHODS This retrospective study included patients from Argentina with advanced NSCLC, and centralized evaluation of PD-L1 expression concurrently with genomic alterations in the driver genes EGFR, ALK, ROS1, BRAF, and/or KRAS G12C in FFPE tissue samples. RESULTS A total of 10 441 patients with advanced NSCLC were analyzed. Adenocarcinoma was the most frequent histological subtype (71.1%). PD-L1 expression was categorized as PD-L1 negative (45.1%), PD-L1 positive low-expression 1%-49% (32.3%), and PD-L1 positive high-expression ≥50% (22.6%). Notably, current smokers and males were more likely to have tumors with PD-L1 tumor proportion score (TPS) ≥50% and ≥ 80% expression, respectively (p < 0.001 and p = 0.013). Tumors with non-adenocarcinoma histology had a significantly higher median PD-L1 expression (p < 0.001). Additionally, PD-L1 in distant nodes was more likely ≥50% (OR 1.60 [95% CI: 1.14-2.25, p < 0.01]). In the multivariate analysis, EGFR-positive tumors were more commonly associated with PD-L1 low expression (OR 0.62 [95% CI: 0.51-0.75], p < 0.01), while ALK-positive tumors had a significant risk of being PD-L1 positive (OR 1.81 [95% CI: 1.30-2.52], p < 0.01). CONCLUSIONS PD-L1 expression was associated with well-defined clinicopathological and genomic features. These findings provide a comprehensive view of the expression of PD-L1 in patients with advanced NSCLC in a large Latin American cohort.
Collapse
Affiliation(s)
- Gonzalo Ruiz
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Diego Enrico
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - Yamil D. Mahmoud
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC)Buenos AiresArgentina
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Alan Ruiz
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | | | - Laura Leguina
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Mariana Barberis
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Asunción Beña
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Esteban Brest
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Solange Starapoli
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | | | - Florencia Tsou
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - Carmen Pupareli
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - María Pía Coppola
- Medical Oncology UnitHospital Zonal Especializado en Agudos y Crónicos Dr. Antonio CetrangoloBuenos AiresArgentina
| | - Alejandra Scocimarro
- Medical Oncology UnitHospital Zonal Especializado en Agudos y Crónicos Dr. Antonio CetrangoloBuenos AiresArgentina
| | - Susana Sena
- Medical Oncology DepartmentHospital AlemánBuenos AiresArgentina
| | - Patricio Levit
- Medical Oncology UnitUnión Personal‐Accord SaludBuenos AiresArgentina
| | - Aldo Perfetti
- Medical Oncology UnitUnión Personal‐Accord SaludBuenos AiresArgentina
- Medical Oncology DepartmentCentro de Educación Médica e Investigaciones Clínicas (CEMIC)Buenos AiresArgentina
| | - Enrique Aman
- Medical Oncology Unit, Swiss Medical GroupBuenos AiresArgentina
| | - María Romina Girotti
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC)Buenos AiresArgentina
| | - Oscar Arrieta
- Head of Thoracic Oncology UnitUnidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan)Mexico CityMexico
| | - Claudio Martín
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - Rubén Salanova
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| |
Collapse
|
5
|
Choi YJ, Choi M, Park J, Park M, Kim MJ, Lee JS, Oh SJ, Lee YJ, Shim WS, Kim JW, Kim MJ, Kim YC, Kang KW. Therapeutic strategy using novel RET/YES1 dual-target inhibitor in lung cancer. Biomed Pharmacother 2024; 171:116124. [PMID: 38198957 DOI: 10.1016/j.biopha.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Lung cancer represents a significant global health concern and stands as the leading cause of cancer-related mortality worldwide. The identification of specific genomic alterations such as EGFR and KRAS in lung cancer has paved the way for the development of targeted therapies. While targeted therapies for lung cancer exhibiting EGFR, MET and ALK mutations have been well-established, the options for RET mutations remain limited. Importantly, RET mutations have been found to be mutually exclusive from other genomic mutations and to be related with high incidences of brain metastasis. Given these facts, it is imperative to explore the development of RET-targeting therapies and to elucidate the mechanisms underlying metastasis in RET-expressing lung cancer cells. In this study, we investigated PLM-101, a novel dual-target inhibitor of RET/YES1, which exhibits notable anti-cancer activities against CCDC6-RET-positive cancer cells and anti-metastatic effects against YES1-positive cancer cells. Our findings shed light on the significance of the YES1-Cortactin-actin remodeling pathway in the metastasis of lung cancer cells, establishing YES1 as a promising target for suppression of metastasis. This paper unveils a novel inhibitor that effectively targets both RET and YES1, thereby demonstrating its potential to impede the growth and metastasis of RET rearrangement lung cancer.
Collapse
Affiliation(s)
- Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myung Jun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Sun Lee
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Su-Jin Oh
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Young Joo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Wan Seob Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Won Kim
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Myung Jin Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Yong-Chul Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Qiu T, Zhang F, Zheng B, Feng Z, Li W, Zeng H, Chu L, Ying J. Ultra-rapid Idylla™ EGFR mutation screening followed by next-generation sequencing: An integrated solution to molecular diagnosis of non-small cell lung cancer. Front Oncol 2023; 13:1064487. [PMID: 37064089 PMCID: PMC10102514 DOI: 10.3389/fonc.2023.1064487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundRapid profiling of the EGFR mutations is crucial to help clinicians choose the optimal treatment for patients with advanced/metastatic Non-Small Cell Lung Cancer (NSCLC). Unfortunately, current diagnostic techniques, including ARMS-PCR and NGS, generally require several days to deliver final results. This diagnostic delay may lead to treatment delays for patients who are worsening rapidly.MethodsThis study introduced the ultra-rapid Idylla™ system for rapid, sensitive and specific identification of the EGFR mutations among Chinese NSCLC patients. Idylla™ EGFR Assay, an integrated cartridge running on the Idylla™ system, which can detect 51 EGFR mutations directly from Formalin-Fixed, Paraffin-Embedded (FFPE) samples within 2.5 hours, was used in this study. The sensitivity and specificity of the Idylla™ system were evaluated in comparison with ARMS-PCR or NGS using 95 clinical samples.ResultsThe Idylla™ system achieved a sensitivity of 97.6%, a specificity of 100%, and an overall concordance of 97.9% for 95 retrospective samples. When compared to ARMS-PCR, the Idylla™ system demonstrated high accuracy with an overall agreement of 97.1% (34/35), a sensitivity of 95.2% (20/21) (95% CI, 76.2% - 99.9%), and an estimated specificity of 100% (12/12) (95% CI, 76.8% - 100%) for 35 prospective samples.ConclusionsThis Idylla system provides a rapid, accurate and simple approach for screening EGFR mutations, which can guide Tyrosine Kinase Inhibitors (TKI) treatment for NSCLC patients in a timely manner.
Collapse
Affiliation(s)
- Tian Qiu
- *Correspondence: Tian Qiu, ; Jianming Ying,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu Y, Ouyang L, Mao C, Chen Y, Liu N, Chen L, Shi Y, Xiao D, Liu S, Tao Y. Inhibition of RNF182 mediated by Bap promotes non-small cell lung cancer progression. Front Oncol 2023; 12:1009508. [PMID: 36686776 PMCID: PMC9853554 DOI: 10.3389/fonc.2022.1009508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Ubiquitylation that mediated by ubiquitin ligases plays multiple roles not only in proteasome-mediated protein degradation but also in various cellular process including DNA repair, signal transduction and endocytosis. RING finger (RNF) proteins form the majority of these ubiquitin ligases. Recent studies have demonstrated the important roles of RNF finger proteins in tumorigenesis and tumor progression. Benzo[a]pyrene (BaP) is one of the most common environmental carcinogens causing lung cancer. The molecular mechanism of Bap carcinogenesis remains elusive. Considering the critical roles of RNF proteins in tumorigenesis and tumor progression, we speculate on whether Bap regulates RNF proteins resulting in carcinogenesis. Methods We used GEO analysis to identify the potential RING finger protein family member that contributes to Bap-induced NSCLC. We next used RT-qPCR, Western blot and ChIP assay to investigate the potential mechanism of Bap inhibits RNF182. BGS analyses were used to analyze the methylation level of RNF182. Results Here we reported that the carcinogen Bap suppresses the expression of ring finger protein 182 (RNF182) in non-small cell lung cancer (NSCLC) cells, which is mediated by abnormal hypermethylation in an AhR independent way and transcriptional regulation in an AhR dependent way. Furthermore, RNF182 exhibits low expression and hypermethylation in tumor tissues. RNF182 also significantly suppresses cell proliferation and induces cell cycle arrest in NSCLC cell lines. Conclusion These results demonstrated that Bap inhibits RNF182 expression to promote lung cancer tumorigenesis through activating AhR and promoting abnormal methylation.
Collapse
Affiliation(s)
- Yating Liu
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China,Postdoctoral Research Station of Clinical Medicine & Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lianlian Ouyang
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chao Mao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yuanbing Chen
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Na Liu
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Ling Chen
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research, Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Shuang Liu, ; Yongguang Tao,
| | - Yongguang Tao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shuang Liu, ; Yongguang Tao,
| |
Collapse
|
8
|
Valencia K, Echepare M, Teijeira Á, Pasquier A, Bértolo C, Sainz C, Tamayo I, Picabea B, Bosco G, Thomas R, Agorreta J, López-Picazo JM, Frigola J, Amat R, Calvo A, Felip E, Melero I, Montuenga LM. DSTYK inhibition increases the sensitivity of lung cancer cells to T cell-mediated cytotoxicity. J Exp Med 2022; 219:213507. [PMID: 36169652 PMCID: PMC9524203 DOI: 10.1084/jem.20220726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. We identify DSTYK, a dual serine/threonine and tyrosine non-receptor protein kinase, as a novel actionable target altered in non-small cell lung cancer (NSCLC). We also show DSTYK's association with a lower overall survival (OS) and poorer progression-free survival (PFS) in multiple patient cohorts. Abrogation of DSTYK in lung cancer experimental systems prevents mTOR-dependent cytoprotective autophagy, impairs lysosomal biogenesis and maturation, and induces accumulation of autophagosomes. Moreover, DSTYK inhibition severely affects mitochondrial fitness. We demonstrate in vivo that inhibition of DSTYK sensitizes lung cancer cells to TNF-α-mediated CD8+-killing and immune-resistant lung tumors to anti-PD-1 treatment. Finally, in a series of lung cancer patients, DSTYK copy number gain predicts lack of response to the immunotherapy. In summary, we have uncovered DSTYK as new therapeutic target in lung cancer. Prioritization of this novel target for drug development and clinical testing may expand the percentage of NSCLC patients benefiting from immune-based treatments.
Collapse
Affiliation(s)
- Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Mirari Echepare
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Álvaro Teijeira
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, CIMA-University of Navarra, Pamplona, Spain
| | - Andrea Pasquier
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Cristina Bértolo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain
| | - Cristina Sainz
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Ibon Tamayo
- Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Computational Biology program, CIMA-University of Navarra, Pamplona, Spain
| | - Beñat Picabea
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain
| | - Graziella Bosco
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Roman Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pathology, University Hospital Cologne, Cologne, Germany.,German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jackeline Agorreta
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Health Sciences, Biochemistry Area, Public University of Navarra, Pamplona, Spain
| | | | - Joan Frigola
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ramon Amat
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Enriqueta Felip
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Oncology Department, Hospital Universitari Vall d'Hebron and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ignacio Melero
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain
| |
Collapse
|
9
|
Ruzzi F, Angelicola S, Landuzzi L, Nironi E, Semprini MS, Scalambra L, Altimari A, Gruppioni E, Fiorentino M, Giunchi F, Ferracin M, Astolfi A, Indio V, Ardizzoni A, Gelsomino F, Nanni P, Lollini PL, Palladini A. ADK-VR2, a cell line derived from a treatment-naïve patient with SDC4-ROS1 fusion-positive primarily crizotinib-resistant NSCLC: a novel preclinical model for new drug development of ROS1-rearranged NSCLC. Transl Lung Cancer Res 2022; 11:2216-2229. [PMID: 36519016 PMCID: PMC9742620 DOI: 10.21037/tlcr-22-163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/12/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND ROS1 fusions are driver molecular alterations in 1-2% of non-small cell lung cancers (NSCLCs). Several tyrosine kinase inhibitors (TKIs) have shown high efficacy in patients whose tumors harbour a ROS1 fusion. However, the limited availability of preclinical models of ROS1-positive NSCLC hinders the discovery of new drugs and the understanding of the mechanisms underlying drug resistance and strategies to overcome it. METHODS The ADK-VR2 cell line was derived from the pleural effusion of a treatment-naïve NSCLC patient bearing SDC4-ROS1 gene fusion. The sensitivity of ADK-VR2 and its crizotinib-resistant clone ADK-VR2 AG143 (selected in 3D culture in the presence of crizotinib) to different TKIs was tested in vitro, in both 2D and 3D conditions. Tumorigenic and metastatic ability was assessed in highly immunodeficient mice. In addition, crizotinib efficacy on ADK-VR2 was evaluated in vivo. RESULTS 2D-growth of ADK-VR2 cells was partially inhibited by crizotinib. On the contrary, the treatment with other TKIs, such as lorlatinib, entrectinib and DS-6051b, did not result in cell growth inhibition. TKIs showed dramatically different efficacy on ADK-VR2 cells, depending on the cell culture conditions. In 3D culture, ADK-VR2 growth was indeed almost totally inhibited by lorlatinib and DS-6051b. The clone ADK-VR2 AG143 showed higher resistance to crizotinib treatment in vitro, compared to its parental cell line, in both 2D and 3D cultures. Similarly to ADK-VR2, ADK-VR2 AG143 growth was strongly inhibited by lorlatinib in 3D conditions. Nevertheless, ADK-VR2 AG143 sphere formation was less affected by TKIs treatment, compared to the parental cell line. In vivo experiments highlighted the high tumorigenic and metastatic ability of ADK-VR2 cell line, which, once injected in immunodeficient mice, gave rise to both spontaneous and experimental lung metastases while the crizotinib-resistant clone ADK-VR2 AG143 showed a slower growth in vivo. In addition, ADK-VR2 tumor growth was significantly reduced but not eradicated by crizotinib treatment. CONCLUSIONS The ADK-VR2 cell line is a promising NSCLC preclinical model for the study of novel targeted therapies against ROS1 fusions and the mechanisms of resistance to TKI therapies.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elena Nironi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Altimari
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Giunchi
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Gelsomino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Belluomini L, Avancini A, Pasqualin L, Insolda J, Sposito M, Menis J, Tregnago D, Trestini I, Ferrara MG, Bria E, Milella M, Pilotto S. Selpercatinib in RET-fusion positive metastatic non-small cell lung cancer: achievements and gray areas. Expert Rev Anticancer Ther 2022; 22:785-794. [PMID: 35726802 DOI: 10.1080/14737140.2022.2093190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Selpercatinib is a RET selective tyrosine kinase inhibitor with nanomolar potency against diverse RET alterations, including fusions, activating point mutations, and acquired resistance mutations. Rearranged during transfection (RET) gene is a validated target in non-small-cell lung cancer (NSCLC). Selpercatinib is currently approved for adult patients with metastatic RET fusion-positive NSCLC. AREAS COVERED This review summarizes the efficacy and safety data of selpercatinib in the treatment landscape of RET fusion-positive NSCLC. EXPERT OPINION Globally considered, selpercatinib is an optimal treatment choice, in terms of both (systemic and intracranial) efficacy and safety, in patients affected by advanced NSCLC harboring RET fusions as a driver mechanism. Future challenges include the identification of the most appropriate placement for selpercatinib in the treatment algorithm of RET fusion-positive NSCLC (including early stages), the clarification of resistance mechanisms, as well as of its role in EGFR-mutant NSCLC undergoing progression during osimertinib driven by RET alterations.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Luca Pasqualin
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Jessica Insolda
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Marco Sposito
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Jessica Menis
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Daniela Tregnago
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Trestini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Medical Oncology, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Medical Oncology, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
11
|
Avancini A, Belluomini L, Borsati A, Riva ST, Trestini I, Tregnago D, Dodi A, Lanza M, Pompili C, Mazzarotto R, Micheletto C, Motton M, Scarpa A, Schena F, Milella M, Pilotto S. Integrating supportive care into the multidisciplinary management of lung cancer: we can't wait any longer. Expert Rev Anticancer Ther 2022; 22:725-735. [PMID: 35608060 DOI: 10.1080/14737140.2022.2082410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Due to important achievements in terms of diagnostic and therapeutic tools and the complexity of the disease itself, lung cancer management needs a multidisciplinary approach. To date, the classical multidisciplinary team involves different healthcare providers mainly dedicated to lung cancer diagnosis and treatments. Nevertheless, the underlying disease and related treatments significantly impact on patient function and psychological well-being. In this sense, supportive care may offer the best approach to relieve and manage patient symptoms and treatment-related adverse events. AREAS COVERED Evidence report that exercise, nutrition, smoking cessation and psychological well-being bring many benefits in patients with lung cancer, from both a physical and socio-psychological points of view, and potentially improving their survival. Nevertheless, supportive care is rarely offered to patients, and even less frequently these needs are discussed within the multidisciplinary meeting. EXPERT OPINION Integrating supportive care as part of the standard multidisciplinary approach for lung cancer involves a series of challenges, the first one represented by the daily necessity of specialists, such as kinesiologists, dietitians, psycho-oncologists, able to deliver a personalized approach. In the era of precision medicine this is an essential step forward to guarantee comprehensive and patient-centered care for all patients with lung cancer.
Collapse
Affiliation(s)
- Alice Avancini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Anita Borsati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Teresa Riva
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Trestini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Daniela Tregnago
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alessandra Dodi
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Massimo Lanza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cecilia Pompili
- Thoracic Surgery Department, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Renzo Mazzarotto
- Section of Radiotherapy, Department of Surgery and Oncology, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Claudio Micheletto
- Pulmonary Unit, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Massimiliano Motton
- Radiology Department, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Aldo Scarpa
- Section of Pathology, Department of Diagnostic and Public Health, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
12
|
Wen Q, Zhang Y, Muluh TA, Xiong K, Wang B, Lu Y, Wu Z, Liu Y, Shi H, Xiao S, Fu S. Erythrocyte membrane-camouflaged gefitinib/albumin nanoparticles for tumor imaging and targeted therapy against lung cancer. Int J Biol Macromol 2021; 193:228-237. [PMID: 34688683 DOI: 10.1016/j.ijbiomac.2021.10.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022]
Abstract
Conventional chemotherapeutic drugs may cause serious side effects such as hepatotoxicity and renal toxicity due to lack of targeting, which affects therapy outcome and the prognosis of patients. Therefore, biomimetic nanoparticles with long blood circulation and active targeting have attracted increasing attention. In this work, we fabricated a biomimetic R-RBC@GEF-NPs nano-system by encapsulating gefitinib-loaded albumin nanoparticles (GEF-NPs) inside cRGD-modified red blood cell (RBC) membranes. The complete RBC membrane structure and membrane proteins enabled the NPs to escape phagocytosis by macrophages. In addition, the cRGD moiety significantly improved tumor cell targeting and uptake. R-RBC@GEF-NPs inhibited the growth of A549 cells in vitro in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest at the G1 phase. Likewise, the R-RBC@GEF-NPs also decreased tumor weight and volume in the mice injected with A549 cells and prolonged survival time. In addition, the 99Tc-labeled R-RBC@GEF-NPs selectively accumulated in the tumor tissues in vivo, and enabled real time tumor imaging. Finally, blood and histological analyses showed that R-RBC@GEF-NPs did not cause any obvious systemic toxicity. Taken together, the biomimetic R-RBC@GEF-NPs is a promising therapeutic formulation for the treatment of lung cancer.
Collapse
Affiliation(s)
- Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Peoples' Hospital of Yibin, Yibin 644000, China
| | - Yan Zhang
- Department of Oncology, the Affiliated TCM Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tobias Achu Muluh
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kang Xiong
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - BiQiong Wang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ZhouXue Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - YanLin Liu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Huan Shi
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - SuSu Xiao
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ShaoZhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|
13
|
Lan Y, Liu W, Zhang W, Hu J, Zhu X, Wan L, A S, Ping Y, Xiao Y. Transcriptomic heterogeneity of driver gene mutations reveals novel mutual exclusivity and improves exploration of functional associations. Cancer Med 2021; 10:4977-4993. [PMID: 34076361 PMCID: PMC8290236 DOI: 10.1002/cam4.4039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD), as the most common subtype of lung cancer, is the leading cause of cancer deaths in the world. The accumulation of driver gene mutations enables cancer cells to gradually acquire growth advantage. Therefore, it is important to understand the functions and interactions of driver gene mutations in cancer progression. Methods We obtained gene mutation data and gene expression profile of 506 LUAD tumors from The Cancer Genome Atlas (TCGA). The subtypes of tumors with driver gene mutations were identified by consensus cluster analysis. Results We found 21 significantly mutually exclusive pairs consisting of 20 genes among 506 LUAD patients. Because of the increased transcriptomic heterogeneity of mutations, we identified subtypes among tumors with non‐silent mutations in driver genes. There were 494 mutually exclusive pairs found among driver gene mutations within different subtypes. Furthermore, we identified functions of mutually exclusive pairs based on the hypothesis of functional redundancy of mutual exclusivity. These mutually exclusive pairs were significantly enriched in nuclear division and humoral immune response, which played crucial roles in cancer initiation and progression. We also found 79 mutually exclusive triples among subtypes of tumors with driver gene mutations, which were key roles in cell motility and cellular chemical homeostasis. In addition, two mutually exclusive triples and one mutually exclusive triple were associated with the overall survival and disease‐specific survival of LUAD patients, respectively. Conclusions We revealed novel mutual exclusivity and generated a comprehensive functional landscape of driver gene mutations, which could offer a new perspective to understand the mechanisms of cancer development and identify potential biomarkers for LUAD therapy.
Collapse
Affiliation(s)
- Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanmei Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaojing Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Linyun Wan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Suru A
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Li Y, Gao L, Zhang C, Meng J. LncRNA SNHG3 Promotes Proliferation and Metastasis of Non-Small-Cell Lung Cancer Cells Through miR-515-5p/SUMO2 Axis. Technol Cancer Res Treat 2021; 20:15330338211019376. [PMID: 34032148 PMCID: PMC8155750 DOI: 10.1177/15330338211019376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is a global disease and a major cause of cancer-related mortality worldwide. Accumulated studies have confirmed the essential role of long non-coding RNAs (lncRNAs) in the occurrence and development of cancers. Meanwhile, there have been reports concerning the role of Small Nucleolar RNA Host Gene 3 (SNHG3) in various cancers. However, there are so far few studies on the function and mechanism of SNHG3 in lung cancer. In the present study, SNHG3 was found to be highly expressed in lung cancer tissues and cells. Downregulation of SNHG3 could inhibit cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) process. In addition, SNHG3 was found to have the ability to bind to miR-515-5p. Furthermore, Small Ubiquitin Like Modifier 2 (SUMO2) was identified to be the downstream target of miR-515-5p, which was negatively correlated with miR-515-5p expression. SNHG3 could positively regulate SUMO2 expression by sponging miR-515-5p. In addition, the rescue experiment showed that simultaneous transfection of miR-515-5p or SUMO2 siRNA could reverse the effect of SNHG3 expression on cell proliferation and metastasis. Collectively, our study demonstrates that SNHG3 can act on miR-515-5p in the form of competitive endogenous RNA (ceRNA) to regulate SUMO2 positively and thus affect the proliferation and metastasis of NSCLC cells. Findings in our study support that SNHG3/miR-515-5p/SUMO2 regulatory axis may become a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Yongqun Li
- Department of Respiratory Medicine, The Sixth Medical Center of PLA
General Hospital, Beijing, China
| | - Lipin Gao
- Department of Hematology, The Sixth Medical Center of PLA General
Hospital, Beijing, China
| | - Caiyun Zhang
- Department of Respiratory Medicine, The Sixth Medical Center of PLA
General Hospital, Beijing, China
| | - Jiguang Meng
- Department of Respiratory Medicine, The Sixth Medical Center of PLA
General Hospital, Beijing, China
| |
Collapse
|