1
|
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT. Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape. Front Immunol 2024; 15:1424396. [PMID: 39346924 PMCID: PMC11427296 DOI: 10.3389/fimmu.2024.1424396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.
Collapse
Affiliation(s)
- Julio F Inocencio
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stefan Mitrasinovic
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
2
|
Kuehn JC, Metzger P, Neidert N, Matysiak U, Gräßel L, Philipp U, Bleul S, Pauli T, Falkenstein J, Bertemes H, Cysar S, Hess ME, Frey AV, Duque-Afonso J, Schorb E, Machein M, Beck J, Schnell O, von Bubnoff N, Illert AL, Peters C, Brummer T, Prinz M, Miething C, Becker H, Lassmann S, Werner M, Börries M, Duyster J, Heiland DH, Sankowski R, Scherer F. Comprehensive genetic profiling and molecularly guided treatment for patients with primary CNS tumors. NPJ Precis Oncol 2024; 8:180. [PMID: 39143272 PMCID: PMC11324882 DOI: 10.1038/s41698-024-00674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Despite major advances in molecular profiling and classification of primary brain tumors, personalized treatment remains limited for most patients. Here, we explored the feasibility of individual molecular profiling and the efficacy of biomarker-guided therapy for adult patients with primary brain cancers in the real-world setting within the molecular tumor board Freiburg, Germany. We analyzed genetic profiles, personalized treatment recommendations, and clinical outcomes of 102 patients with 21 brain tumor types. Alterations in the cell cycle, BRAF, and mTOR pathways most frequently led to personalized treatment recommendations. Molecularly informed therapies were recommended in 71% and implemented in 32% of patients with completed molecular diagnostics. The disease control rate following targeted treatment was 50% and the overall response rate was 30%, with a progression-free survival 2/1 ratio of at least 1.3 in 31% of patients. This study highlights the efficacy of molecularly guided treatment and the need for biomarker-stratified trials in brain cancers.
Collapse
Affiliation(s)
- Julia C Kuehn
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicolas Neidert
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
| | - Uta Matysiak
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Linda Gräßel
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Philipp
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Bleul
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Pauli
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Falkenstein
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Henriette Bertemes
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stepan Cysar
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Elena Hess
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anna Verena Frey
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jesús Duque-Afonso
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elisabeth Schorb
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcia Machein
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Anna L Illert
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
- Department of Medicine III, Faculty of Medicine, Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Christoph Peters
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tilman Brummer
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Miething
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
| | - Silke Lassmann
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Börries
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman Sankowski
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK Partner site Freiburg, a partnership between DKFZ and Medical Center-University of Freiburg, Heidelberg, Germany.
| |
Collapse
|
3
|
Guo G, Zhang Z, Zhang J, Wang D, Xu S, Liu G, Gao Y, Mei J, Yan Z, Zhao R, Wang M, Li T, Bu X. Predicting recurrent glioblastoma clinical outcome to immune checkpoint inhibition and low-dose bevacizumab with tumor in situ fluid circulating tumor DNA analysis. Cancer Immunol Immunother 2024; 73:193. [PMID: 39105794 PMCID: PMC11303371 DOI: 10.1007/s00262-024-03774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Most recurrent glioblastoma (rGBM) patients do not benefit from immune checkpoint inhibition, emphasizing the necessity for response biomarkers. This study evaluates whether tumor in situ fluid (TISF) circulating tumor DNA (ctDNA) could serve as a biomarker for response to low-dose bevacizumab (Bev) plus anti-PD-1 therapy in rGBM patients, aiming to enhance systemic responses to immunotherapy. METHODS In this phase II trial, 32 GBM patients with first recurrence after standard therapy were enrolled and then received tislelizumab plus low-dose Bev each cycle. TISF samples were analyzed for ctDNA using a 551-gene panel before each treatment. RESULTS The median progression-free survival (mPFS) and overall survival (mOS) were 8.2 months (95% CI, 5.2-11.1) and 14.3 months (95% CI, 6.5-22.1), respectively. The 12-month OS was 43.8%, and the objective response rate was 56.3%. Patients with more than 20% reduction in the mutant allele fraction and tumor mutational burden after treatment were significantly associated with better prognosis compared to baseline TISF-ctDNA. Among detectable gene mutations, patients with MUC16 mutation, EGFR mutation & amplification, SRSF2 amplification, and H3F3B amplification were significantly associated with worse prognosis. CONCLUSIONS Low-dose Bev plus anti-PD-1 therapy significantly improves OS in rGBM patients, offering guiding significance for future individualized treatment strategies. TISF-ctDNA can monitor rGBM patients' response to combination therapy and guide treatment. CLINICAL TRIAL REGISTRATION This trial is registered with ClinicalTrials.gov, NCT05540275.
Collapse
Affiliation(s)
- Guangzhong Guo
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ziyue Zhang
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiubing Zhang
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dayang Wang
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Sensen Xu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Guanzheng Liu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yushuai Gao
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jie Mei
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ruijiao Zhao
- Department of Pathology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Tianxiao Li
- Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, China
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Xingyao Bu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
4
|
Haynes T, Gilbert MR, Breen K, Yang C. Pathways to hypermutation in high-grade gliomas: Mechanisms, syndromes, and opportunities for immunotherapy. Neurooncol Adv 2024; 6:vdae105. [PMID: 39022645 PMCID: PMC11252568 DOI: 10.1093/noajnl/vdae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Despite rapid advances in the field of immunotherapy, including the success of immune checkpoint inhibition in treating multiple cancer types, clinical response in high-grade gliomas (HGGs) has been disappointing. This has been in part attributed to the low tumor mutational burden (TMB) of the majority of HGGs. Hypermutation is a recently characterized glioma signature that occurs in a small subset of cases, which may open an avenue to immunotherapy. The substantially elevated TMB of these tumors most commonly results from alterations in the DNA mismatch repair pathway in the setting of extensive exposure to temozolomide or, less frequently, from inherited cancer predisposition syndromes. In this review, we discuss the genetics and etiology of hypermutation in HGGs, with an emphasis on the resulting genomic signatures, and the state and future directions of immuno-oncology research in these patient populations.
Collapse
Affiliation(s)
- Tuesday Haynes
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Kevin Breen
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| |
Collapse
|
5
|
Sun C, Luo T, Liu Z, Ge J, Shao L, Liu X, Li B, Zhang S, Qiu Q, Wei W, Wang S, Bian XW, Tian J. Tumor Mutation Burden-Related Histopathologic Features for Predicting Overall Survival in Gliomas Using Graph Deep Learning. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2111-2121. [PMID: 37741452 DOI: 10.1016/j.ajpath.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/25/2023]
Abstract
Tumor mutation burden (TMB) is a potential biomarker for evaluating the prognosis and response to immune checkpoint inhibitors, but its costly and time-consuming method of measurement limits its widespread application. This study aimed to identify the TMB-related histopathologic features from hematoxylin and eosin slides and explore their prognostic value in gliomas. TMB-related features were detected using a graph convolutional neural network from whole-slide images of patients from The Cancer Genome Atlas data set (619 patients), and the correlation between features and TMB was evaluated in an external validation set (237 patients). TMB-related features were used for predicting overall survival (OS) of patients to investigate whether these features have potential for prognostic prediction. Moreover, biological pathways underlying the prognostic value of the features were further explored. Histopathologic features derived from whole-slide images were significantly associated with patient TMB (P = 0.007 in the external validation set). TMB-related features showed excellent performance for OS prediction, and patients with lower-grade gliomas could be further stratified into different risk groups according to the features (P = 0.00013; hazard ratio, 4.004). Pathways involved in the cell cycle and execution of immune response were enriched in patients with higher OS risk. The TMB-related features could be used to estimate TMB and aid in prognostic risk stratification of patients with glioma with dysregulated biological pathways.
Collapse
Affiliation(s)
- Caixia Sun
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing; Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing
| | - Zhenyu Liu
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing
| | - Jia Ge
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing
| | - Lizhi Shao
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Liu
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Bao Li
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Song Zhang
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Qi Qiu
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing; Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing; Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
6
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
7
|
Gallus M, Kwok D, Lakshmanachetty S, Yamamichi A, Okada H. Immunotherapy Approaches in Isocitrate-Dehydrogenase-Mutant Low-Grade Glioma. Cancers (Basel) 2023; 15:3726. [PMID: 37509387 PMCID: PMC10378701 DOI: 10.3390/cancers15143726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Low-grade gliomas (LGGs) are slow-growing tumors in the central nervous system (CNS). Patients characteristically show the onset of seizures or neurological deficits due to the predominant LGG location in high-functional brain areas. As a molecular hallmark, LGGs display mutations in the isocitrate dehydrogenase (IDH) enzymes, resulting in an altered cellular energy metabolism and the production of the oncometabolite D-2-hydroxyglutarate. Despite the remarkable progress in improving the extent of resection and adjuvant radiotherapy and chemotherapy, LGG remains incurable, and secondary malignant transformation is often observed. Therefore, novel therapeutic approaches are urgently needed. In recent years, immunotherapeutic strategies have led to tremendous success in various cancer types, but the effect of immunotherapy against glioma has been limited due to several challenges, such as tumor heterogeneity and the immunologically "cold" tumor microenvironment. Nevertheless, recent preclinical and clinical findings from immunotherapy trials are encouraging and offer a glimmer of hope for treating IDH-mutant LGG patients. Here, we aim to review the lessons learned from trials involving vaccines, T-cell therapies, and IDH-mutant inhibitors and discuss future approaches to enhance the efficacy of immunotherapies in IDH-mutant LGG.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Department of Neurosurgery, University Hospital Muenster, 48149 Muenster, Germany
| | - Darwin Kwok
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | | | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Park JH, Kang I, Lee HK. γδ T Cells in Brain Homeostasis and Diseases. Front Immunol 2022; 13:886397. [PMID: 35693762 PMCID: PMC9181321 DOI: 10.3389/fimmu.2022.886397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
γδ T cells are a distinct subset of T cells expressing γδ T cell receptor (TCR) rather than αβTCR. Since their discovery, the critical roles of γδ T cells in multiple physiological systems and diseases have been investigated. γδ T cells are preferentially located at mucosal surfaces, such as the gut, although a small subset of γδ T cells can circulate the blood. Additionally, a subset of γδ T cells reside in the meninges in the central nervous system. Recent findings suggest γδ T cells in the meninges have critical roles in brain function and homeostasis. In addition, several lines of evidence have shown γδ T cells can infiltrate the brain parenchyma and regulate inflammatory responses in multiple diseases, including neurodegenerative diseases. Although the importance of γδ T cells in the brain is well established, their roles are still incompletely understood due to the complexity of their biology. Because γδ T cells rapidly respond to changes in brain status and regulate disease progression, understanding the role of γδ T cells in the brain will provide critical information that is essential for interpreting neuroimmune modulation. In this review, we summarize the complex role of γδ T cells in the brain and discuss future directions for research.
Collapse
|