1
|
Malier M, Laverriere MH, Henry M, Yakoubi M, Bellaud P, Arellano C, Sébillot A, Thomas F, Josserand V, Girard E, Roth GS, Millet A. Tumor-associated macrophages confer resistance to chemotherapy (Trifluridine/Tipiracil) in digestive cancers by overexpressing thymidine phosphorylase. Cancer Lett 2024; 606:217307. [PMID: 39454852 DOI: 10.1016/j.canlet.2024.217307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Pyrimidine analogs are part of the first-line chemotherapy regimen for gastrointestinal cancers. Trifluridine combined with tipiracil, a specific thymidine phosphorylase inhibitor, in TAS-102 has recently emerged as a potential alternative in the face of primary or secondary chemoresistance to 5-fluorouracil. Despite its promise, we report that macrophage-specific overexpression of thymidine phosphorylase results in macrophage-induced chemoresistance to TAS-102 that is insensitive to tipiracil inhibition. Furthermore, we illustrate the human-specific nature of this mechanism, as mouse macrophages do not express substantial levels of thymidine phosphorylase, which constrains the applicability of mouse models. To study the importance of macrophages in chemoresistance to trifluridine, we developed a humanized mouse model with tumor-implanted human macrophages and demonstrated their important role in treatment resistance to pyrimidine analogs. Additionally, our findings revealed that macrophages represent a significant source of thymidine phosphorylase expression, comprising over 40 % of the expressing cells, in human colorectal cancer, thereby contributing to chemoresistance.
Collapse
Affiliation(s)
- Marie Malier
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, 38000, Grenoble, France
| | - Marie-Hélène Laverriere
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, 38000, Grenoble, France; Department of Pathology, DACP, University Hospital, Grenoble, France
| | - Maxime Henry
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences OPTIMAL platform, Grenoble, France
| | - Malika Yakoubi
- CRCT Inserm U037, Toulouse University 3, Toulouse, France
| | - Pascale Bellaud
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, France-BioImaging (ANR-10-INBS-04), Core Facility H2P2, F-35000, Rennes, France
| | | | - Anthony Sébillot
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, France-BioImaging (ANR-10-INBS-04), Core Facility H2P2, F-35000, Rennes, France
| | | | - Véronique Josserand
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences OPTIMAL platform, Grenoble, France
| | - Edouard Girard
- Univ.Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Gael S Roth
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, 38000, Grenoble, France; Hepato-Gastroenterology and Digestive Oncology department, University Hospital, Grenoble, France
| | - Arnaud Millet
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, 38000, Grenoble, France; Hepato-Gastroenterology and Digestive Oncology department, University Hospital, Grenoble, France.
| |
Collapse
|
2
|
Luo K, Hu X, Li Y, Guo M, Liu X, Zhang Y, Zhuo W, Yang B, Wang X, Shi C. Revealing the mechanism of citral induced entry of Vibrio vulnificus into viable but not culturable (VBNC) state based on transcriptomics. Int J Food Microbiol 2024; 416:110656. [PMID: 38461733 DOI: 10.1016/j.ijfoodmicro.2024.110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Citral has attracted much attention as a safe and effective plant-derived bacteriostatic agent. However, the ability of citral to induce the formation of VBNC state in Vibrio vulnificus has not been evaluated. In the present study, V. vulnificus was shown to be induced to form the VBNC state at 4.5 h and 3 h of citral treatment at 4MIC and 6MIC. Moreover, the citral-induced VBNC state of V. vulnificus maintained some respiratory chain activity and was able to recover well in both APW media, APW media supplemented with 5 % (v/v) Tween 80 and 2 mg/mL sodium pyruvate. Field emission and transmission electron microscopy showed that the external structure of the citral-induced VBNC V. vulnificus cells was shortened to short rods, with folded cell membrane, rough cell surface, and dense cytoplasm and loose nuclear material in the internal cell structure. In addition, the possible molecular mechanisms of citral-induced formation and recovery of V. vulnificus in the VBNC state were explored by transcriptomics. Transcriptome analyses revealed that 1118 genes were significantly altered upon entry into the VBNC state, and 1052 genes were changed after resuscitation. Most of the physiological activities related to energy production were inhibited in the citral-induced VBNC state of V. vulnificus; however, the bacteria retained its pathogenicity. The citral-induced resuscitation of V. vulnificus in the VBNC state selectively restored the activity of some genes related to bacterial growth and reproduction. Meanwhile, the expression levels of other genes may have been influenced by citral-induced resuscitation after the formation of the VBNC state. In conclusion, this study evaluated and analyzed the ability and possible mechanism of citral on the formation of VBNC state and the recovery of VBNC state of V. vulnificus, and made a comprehensive assessment for the safety of citral application in food production.
Collapse
Affiliation(s)
- Kunyao Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Xinquan Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanzheng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meixian Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, China.
| |
Collapse
|
3
|
He Z, Chen Y, Gao J, Xu Y, Zhou X, Yang R, Geng R, Li R, Yu G. Comparative toxicology of algal cell extracts and pure cyanotoxins: insights into toxic effects and mechanisms of harmful cyanobacteria Raphidiopsis raciborskii. HARMFUL ALGAE 2024; 135:102635. [PMID: 38830716 DOI: 10.1016/j.hal.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Ongoing research on cyanotoxins, driven by the socioeconomic impact of harmful algal blooms, emphasizes the critical necessity of elucidating the toxicological profiles of algal cell extracts and pure toxins. This study comprehensively compares Raphidiopsis raciborskii dissolved extract (RDE) and cylindrospermopsin (CYN) based on Daphnia magna assays. Both RDE and CYN target vital organs and disrupt reproduction, development, and digestion, thereby causing acute and chronic toxicity. Disturbances in locomotion, reduced behavioral activity, and weakened swimming capability in D. magna have also been reported for both RDE and CYN, indicating the insufficiency of conventional toxicity evaluation parameters for distinguishing between the toxic effects of algal extracts and pure cyanotoxins. Additionally, chemical profiling revealed the presence of highly active tryptophan-, humic acid-, and fulvic acid-like fluorescence compounds in the RDE, along with the active constituents of CYN, within a 15-day period, demonstrating the chemical complexity and dynamics of the RDE. Transcriptomics was used to further elucidate the distinct molecular mechanisms of RDE and CYN. They act diversely in terms of cytotoxicity, involving oxidative stress and response, protein content, and energy metabolism, and demonstrate distinct modes of action in neurofunctions. In essence, this study underscores the distinct toxicity mechanisms of RDE and CYN and emphasizes the necessity for context- and objective-specific toxicity assessments, advocating nuanced approaches to evaluate the ecological and health implications of cyanotoxins, thereby contributing to the precision of environmental risk assessments.
Collapse
Affiliation(s)
- Zhongshi He
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Youxin Chen
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jin Gao
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yewei Xu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xinya Zhou
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yang
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruozhen Geng
- Ecological Environment Monitoring and Scientific Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai 200125, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Renhui Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang 325035, China
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Murmu A, Banjare P, Matore BW, Roy PP, Singh J. 1,3,4-Oxadiazole: An Emerging Scaffold to Inhibit the Thymidine Phosphorylase as an Anticancer Agent. Curr Med Chem 2024; 31:6227-6250. [PMID: 37438902 DOI: 10.2174/0929867331666230712113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
Thymidine phosphorylase (TP), also referred to as "platelet-derived endothelial cell growth factor" is crucial to the pyrimidine salvage pathway. TP reversibly transforms thymidine into thymine and 2-deoxy-D-ribose-1-phosphate (dRib-1-P), which further degraded to 2-Deoxy-D-ribose (2DDR), which has both angiogenic and chemotactic activity. In several types of human cancer such as breast and colorectal malignancies, TP is abundantly expressed in response to biological disturbances like hypoxia, acidosis, chemotherapy, and radiation therapy. TP overexpression is highly associated with angiogenic factors such as vascular endothelial growth factor (VEGF), interleukins (ILs), matrix metalloproteases (MMPs), etc., which accelerate tumorigenesis, invasion, metastasis, immune response evasion, and resistant to apoptosis. Hence, TP is recognized as a key target for the development of new anticancer drugs. Heterocycles are the primary structural element of most chemotherapeutics. Even 75% of nitrogen-containing heterocyclic compounds are contributing to the pharmaceutical world. To create the bioactive molecule, medicinal chemists are concentrating on nitrogen-containing heterocyclic compounds such as pyrrole, pyrrolidine, pyridine, imidazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, benzimidazole, etc. The Oxadiazole motif stands out among all of them due to its enormous significance in medicinal chemistry. The main thrust area of this review is to explore the synthesis, SAR, and the significant role of 1,3,4-oxadiazole derivatives as a TP inhibitor for their chemotherapeutic effects.
Collapse
Affiliation(s)
- Anjali Murmu
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Purusottam Banjare
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| |
Collapse
|
5
|
Hashimoto I, Kano K, Onuma S, Suematsu H, Nagasawa S, Kanematsu K, Furusawa K, Hamaguchi T, Watanabe M, Hayashi K, Furuta M, Inokuchi Y, Machida N, Aoyama T, Yamada T, Rino Y, Ogata T, Oshima T. Clinical Effect of the C-Reactive Protein to Serum Albumin Ratio in Patients with Metastatic Gastric or Gastroesophageal Junction Cancer Treated with Trifluridine/Tipiracil. J Pers Med 2023; 13:923. [PMID: 37373912 DOI: 10.3390/jpm13060923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Trifluridine/tipiracil (FTD/TPI) is an oral anticancer agent used as a third- or later-line treatment for patients with metastatic gastric cancer/gastroesophageal junction cancer (mGC/GEJC). The C-reactive protein-to-serum albumin ratio (CAR) is an inflammation-based prognostic marker in gastric cancer. This retrospective study evaluated CAR's clinical significance as a prognostic factor in 64 patients with mGC/GEJC administered FTD/TPI as a third- or later-line therapy. Patients were categorized into high- and low-CAR groups based on pre-treatment blood data. This study evaluated associations between CAR and overall survival (OS), progression-free survival (PFS), clinicopathological features, treatment efficacy, and adverse events. The high-CAR group had significantly worse Eastern Cooperative Oncology Group performance status, a higher prevalence of patients administered with a single course of FTD/TPI, and a higher rate of patients not administered chemotherapy after FTD/TPI therapy than the low-CAR group. Median OS and PFS were significantly poorer in the high-CAR group than in the low-CAR group (113 vs. 399 days; p < 0.001 and 39 vs. 112 days; p < 0.001, respectively). In multivariate analysis, high CAR was an independent prognostic factor for OS and PFS. The overall response rate was not significantly different between the high- and low-CAR groups. Regarding adverse events, the high-CAR group had a significantly lower incidence of neutropenia and a higher incidence of fatigue than the low-CAR group. Therefore, CAR may be a potentially useful prognostic factor for patients with mGC/GEJC treated with FTD/TPI as third- or later-line chemotherapy.
Collapse
Affiliation(s)
- Itaru Hashimoto
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Kazuki Kano
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Shizune Onuma
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Hideaki Suematsu
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Shinsuke Nagasawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Kyohei Kanematsu
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Kyoko Furusawa
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Tomomi Hamaguchi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Kei Hayashi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Mitsuhiro Furuta
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Yasuhiro Inokuchi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Nozomu Machida
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Toru Aoyama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Takashi Ogata
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| |
Collapse
|
6
|
Zhu Z, Liu Y, Chen J, He Z, Tan P, He Y, Pei X, Wang J, Tan L, Wan Q. Structural-Functional Pluralistic Modification of Silk Fibroin via MOF Bridging for Advanced Wound Care. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204553. [PMID: 36307870 PMCID: PMC9762304 DOI: 10.1002/advs.202204553] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Indexed: 05/31/2023]
Abstract
Silk fibroin (SF) is widely used to fabricate biomaterials for skin related wound caring or monitoring, and its hydrogel state are preferred for their adaptability and easy to use. However, in-depth development of SF hydrogel is restricted by their limited mechanical strength, increased risk of infection, and inability to accelerate tissue healing. Therefore, a structure-function pluralistic modification strategy using composite system of metal organic framework (MOF) as bridge expanding SF's biomedical application is proposed. After developing the photocuring and bonding SF hydrogel, a MOF drug-loading system is utilized to enhance hydrogel's structural strength while endowing its antibacterial and angiogenic properties, yielding a multifunctional SF hydrogel. The synergy between the MOF and SF proteins at the secondary structure level gives this hydrogel reliable mechanical strength, making it suitable for conventional wound treatment, whether for closing incisions quickly or acting as adhesive dressings (five times the bonding strength of ordinary fibrin glue). Additionally, with the antibacterial and angiogenic functions getting from MOF system, this modified SF hydrogel can even treat ischemic trauma with cartilage exposure. This multiple modification should contribute to the improvement of advanced wound care, by promoting SF application in the production of tissue engineering materials.
Collapse
Affiliation(s)
- Zhou Zhu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Yanhua Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Junyu Chen
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zihan He
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Pengfei Tan
- College of Biomass Science & EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Xibo Pei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jian Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Lin Tan
- College of Biomass Science & EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Qianbing Wan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|