1
|
Avnet S, Mizushima E, Severino B, Lipreri MV, Scognamiglio A, Corvino A, Baldini N, Cortini M. Antagonizing the S1P-S1P3 Axis as a Promising Anti-Angiogenic Strategy. Metabolites 2025; 15:178. [PMID: 40137142 PMCID: PMC11944055 DOI: 10.3390/metabo15030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Angiogenesis, the process of new blood vessel formation, is critically regulated by a balance of pro- and anti-angiogenic factors. This process plays a central role in tumor progression and is modulated by tumor cells. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule acting via G-protein-coupled receptors (S1PR1-5), has emerged as a key mediator of vascular development and pathological angiogenesis in cancer. Consequently, targeting the S1P-S1PRs axis represents a promising strategy for antiangiogenic therapies. This study explores S1PR3 as a potential therapeutic target in osteosarcoma, the most common primary bone malignancy, which we have previously demonstrated to secrete S1P within the acidic tumor microenvironment. METHODS The effects of KRX-725-II and its derivatives, Tic-4-KRX-725-II and [D-Tic]4-KRX-725-II-pepducins acting as S1PR3 antagonists as allosteric modulators of GPCR activity-were tested on metastatic osteosarcoma cells (143B) for proliferation and migration inhibition. Anti-angiogenic activity was assessed using endothelial cells (HUVEC) through proliferation and tubulogenesis assays in 2D, alongside sprouting and migration analyses in a 3D passively perfused microfluidic chip. RESULTS S1PR3 inhibition did not alter osteosarcoma cell growth or migration. However, it impaired endothelial cell tubulogenesis up to 75% and sprouting up to 30% in respect to controls. Conventional 2D assays revealed reduced tubule nodes and length, while 3D microfluidic models demonstrated diminished sprouting area and maximum migration distance, indicating S1PR3's role in driving endothelial cell differentiation. CONCLUSIONS These findings highlight S1PR3 as a critical regulator of angiogenesis and posit its targeting as a novel anti-angiogenic strategy, particularly for aggressive, S1P-secreting tumors with pronounced metastatic potential and an acidic microenvironment.
Collapse
Affiliation(s)
- Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Emi Mizushima
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo 060-8543, Hokkaido, Japan;
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Napoli, Italy; (B.S.); (A.S.); (A.C.)
| | - Maria Veronica Lipreri
- Biomedical Science, Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Antonia Scognamiglio
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Napoli, Italy; (B.S.); (A.S.); (A.C.)
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Napoli, Italy; (B.S.); (A.S.); (A.C.)
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
- Biomedical Science, Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Margherita Cortini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
2
|
Wu S, Hu Y, Sui B. Promotion Mechanisms of Stromal Cell-Mediated Lung Cancer Development Within Tumor Microenvironment. Cancer Manag Res 2025; 17:249-266. [PMID: 39957904 PMCID: PMC11829646 DOI: 10.2147/cmar.s505549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/19/2025] [Indexed: 02/18/2025] Open
Abstract
Lung cancer, with its high incidence and mortality rates, has garnered significant attention in the medical community. The tumor microenvironment (TME), composed of tumor cells, stromal cells, extracellular matrix, surrounding blood vessels, and other signaling molecules, plays a pivotal role in the development of lung cancer. Stromal cells within the TME hold potential as therapeutic targets for lung cancer treatment. However, the precise and comprehensive mechanisms by which stromal cells contribute to lung cancer progression have not been fully elucidated. This review aims to explore the mechanisms through which stromal cells in the tumor microenvironment promote lung cancer development, with a particular focus on how immune cells, tumor-associated fibroblasts, and endothelial cells contribute to immune suppression, inflammation, and angiogenesis. The goal is to provide new insights and potential strategies for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Siyu Wu
- Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yumeng Hu
- Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Bowen Sui
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Bose S, Do V, Testini C, Jadhav SS, Sailliet N, Kho AT, Komatsu M, Boneschansker L, Kong SW, Wedel J, Briscoe DM. Immunomodulation by allograft endothelial cells. FRONTIERS IN TRANSPLANTATION 2025; 4:1518772. [PMID: 39967861 PMCID: PMC11832486 DOI: 10.3389/frtra.2025.1518772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
It is increasingly appreciated that the expression of immunoregulatory molecules within tumors have potential to shape a microenvironment that promotes local immunoevasion and immunoregulation. However, little is known about tissue-intrinsic immunomodulatory mechanisms following transplantation. We propose that differences in the phenotype of microvascular endothelial cells impact the alloantigenicity of the graft and its potential to promote immunoregulation following transplantation. We focus this review on the concept that graft-dependent immunoregulation may evolve post-transplantation, and that it is dependent on the phenotype of select subsets of intragraft endothelial cells. We also discuss evidence that long-term graft survival is critically dependent on adaptive interactions among immune cells and endothelial cells within the transplanted tissue microenvironment.
Collapse
Affiliation(s)
- Sayantan Bose
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vicki Do
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
| | - Chiara Testini
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Suchita S. Jadhav
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Nicolas Sailliet
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Alvin T. Kho
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - Masaki Komatsu
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Leo Boneschansker
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Sek Won Kong
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - Johannes Wedel
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - David M. Briscoe
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|