1
|
Kong X, He T, Qiu H, Zhan L, Yin S. Progress in organic photovoltaics based on green solvents: from solubility enhancement to morphology optimization. Chem Commun (Camb) 2023; 59:12051-12064. [PMID: 37740301 DOI: 10.1039/d3cc04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Solution-processed organic photovoltaics (OPVs) is one of the most promising photovoltaic technologies in the energy field, due to their clean and renewable low-cost manufacturing potential. OPV has rapidly developed with the design and synthesis of highly efficient photovoltaic materials and the development of smart device engineering. To date, the majority of advanced OPV devices have been prepared using halogenated solvents, achieving power conversion efficiencies (PCE) exceeding 19% on a laboratory scale. However, for industrial-scale production, less toxic manufacturing processes and environmental sustainability are the key considerations. Therefore, this review summarizes recent advances in green solvent-based approaches for the preparation of OPVs, highlighting material design (including polymer donors and small molecule acceptors) and device engineering (co-solvent methods, additive strategies, post-treatment methods, and regulation of coating method), emphasizing crucial factors for achieving high performance in green solvent-processed OPV devices. This review presents potential future directions for green solvent-based OPVs, which may pave the way for future industrial development.
Collapse
Affiliation(s)
- Xiangyue Kong
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| | - Tian He
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| | - Huayu Qiu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| | - Lingling Zhan
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| |
Collapse
|
2
|
Romero A, Velasco-Medina J, Ortiz A. Morphology Determines an Efficient Coherent Electron Transport for Push-Pull Organic Semiconductors Based on Triphenylamine and Dicyanovinyl Groups. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2442. [PMID: 36984323 PMCID: PMC10058145 DOI: 10.3390/ma16062442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/18/2023]
Abstract
The morphology of the active layer in organic solar cells is fundamental for achieving high power conversion efficiency. However, the morphological characteristics for optimal performance are still being investigated. An atomistic computational approach is required to determine the relationship between active layer morphology and performance. Since the organic solar cell has multiple phases and interfaces, the computational modeling of charge generation and transport is challenging. We then used a set of push-pull semiconductors to illustrate how the electronic transmission spectrum, derived from the Landauer-Büttiker formalism, can be used to investigate the efficiency of coherent charge transport across anisotropic organic solids. The electronic transmission spectrum was calculated from the electronic band structure obtained using the density-functional-based tight-binding method. We found that coherent charge transport was more efficient along the direction parallel with the interface between the electron-acceptor and electron-donor moieties for a herringbone morphology.
Collapse
Affiliation(s)
- Alexander Romero
- Grupo de Bionanoelectrónica, Universidad del Valle, Calle 13 # 100-00, Cali 760001, Colombia;
| | - Jaime Velasco-Medina
- Grupo de Bionanoelectrónica, Universidad del Valle, Calle 13 # 100-00, Cali 760001, Colombia;
| | - Alejandro Ortiz
- Grupo de Investigación de Compuestos Heterocíclicos, Universidad del Valle, Calle 13 # 100-00, Cali 760001, Colombia;
| |
Collapse
|
3
|
Sami S, Alessandri R, W. Wijaya JB, Grünewald F, de Vries AH, Marrink SJ, Broer R, Havenith RWA. Strategies for Enhancing the Dielectric Constant of Organic Materials. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19462-19469. [PMID: 36425002 PMCID: PMC9677499 DOI: 10.1021/acs.jpcc.2c05682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Indexed: 05/30/2023]
Abstract
High dielectric constant organic semiconductors, often obtained by the use of ethylene glycol (EG) side chains, have gained attention in recent years in the efforts of improving the device performance for various applications. Dielectric constant enhancements due to EGs have been demonstrated extensively, but various effects, such as the choice of the particular molecule and the frequency and temperature regime, that determine the extent of this enhancement require further understanding. In this work, we study these effects by means of polarizable molecular dynamics simulations on a carefully selected set of fullerene derivatives with EG side chains. The selection allows studying the dielectric response in terms of both the number and length of EG chains and also the choice of the group connecting the fullerene to the EG chain. The computed time- and frequency-dependent dielectric responses reveal that the experimentally observed rise of the dielectric constant within the kilo/megahertz regime for some molecules is likely due to the highly stretched dielectric response of the EGs: the initial sharp increase over the first few nanoseconds is followed by a smaller but persistent increase in the range of microseconds. Additionally, our computational protocol allows the separation of different factors that contribute to the overall dielectric constant, providing insights to make several molecular design guides for future organic materials in order to enhance their dielectric constant further.
Collapse
Affiliation(s)
- Selim Sami
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
| | - Riccardo Alessandri
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Jeff B. W. Wijaya
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
| | - Fabian Grünewald
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Alex H. de Vries
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Siewert J. Marrink
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Ria Broer
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
| | - Remco W. A. Havenith
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Department
of Chemistry, Ghent University, Krijgslaan 281-(S3), B-9000Ghent, Belgium
| |
Collapse
|
4
|
Zhan L, Yin S, Li Y, Li S, Chen T, Sun R, Min J, Zhou G, Zhu H, Chen Y, Fang J, Ma CQ, Xia X, Lu X, Qiu H, Fu W, Chen H. Multiphase Morphology with Enhanced Carrier Lifetime via Quaternary Strategy Enables High-Efficiency, Thick-Film, and Large-Area Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206269. [PMID: 36106624 DOI: 10.1002/adma.202206269] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/03/2022] [Indexed: 06/15/2023]
Abstract
With the continuous breakthrough of the efficiency of organic photovoltaics (OPVs), their practical applications are on the agenda. However, the thickness tolerance and upscaling in recently reported high-efficiency devices remains challenging. In this work, the multiphase morphology and desired carrier behaviors are realized by utilizing a quaternary strategy. Notably, the exciton separation, carrier mobility, and carrier lifetime are enhanced significantly, the carrier recombination and the energy loss (Eloss ) are reduced, thus beneficial for a higher short-circuit density (JSC ), fill factor (FF), and open-circuit voltage (VOC ) of the quaternary system. Moreover, the intermixing-phase size is optimized, which is favorable for constructing the thick-film and large-area devices. Finally, the device with a 110 nm-thick active layer shows an outstanding power conversion efficiency (PCE) of 19.32% (certified 19.35%). Furthermore, the large-area (1.05 and 72.25 cm2 ) devices with 110 nm thickness present PCEs of 18.25% and 12.20%, and the device with a 305 nm-thick film (0.0473 cm2 ) delivers a PCE of 17.55%, which are among the highest values reported. The work demonstrates the potential of the quaternary strategy for large-area and thick-film OPVs and promotes the practical application of OPVs in the future.
Collapse
Affiliation(s)
- Lingling Zhan
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yaokai Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuixing Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Guanqing Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiyao Chen
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and, Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Jin Fang
- i-Lab & Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Chang-Qi Ma
- i-Lab & Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Xinxin Xia
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Huayu Qiu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Weifei Fu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
5
|
|
6
|
Johnston AR, Minckler ED, Shockley MCJ, Matsushima LN, Perry SL, Ayzner AL. Conjugated Polyelectrolyte‐Based Complex Fluids as Aqueous Exciton Transport Networks. Angew Chem Int Ed Engl 2022; 61:e202117759. [DOI: 10.1002/anie.202117759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Anna R. Johnston
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Eris D. Minckler
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Mia C. J. Shockley
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Levi N. Matsushima
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Sarah L. Perry
- Department of Chemical Engineering University of Massachusetts Amherst Amherst, MA USA
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| |
Collapse
|
7
|
Johnston AR, Minckler ED, Shockley MCJ, Matsushima LN, Perry SL, Ayzner AL. Conjugated Polyelectrolyte‐Based Complex Fluids as Aqueous Exciton Transport Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna R. Johnston
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Eris D. Minckler
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Mia C. J. Shockley
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Levi N. Matsushima
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Sarah L. Perry
- Department of Chemical Engineering University of Massachusetts Amherst Amherst, MA USA
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| |
Collapse
|
8
|
Xu X, Fu M, Yang M, Hu B, Yang J, Gui W, Guo J. NaYF 4:Yb 3+(58%),Tm 3+@NaYF 4@Au nanocomposite for 4-nitrophenol ultrasensitive quantitative detection and highly efficient catalytic reduction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NaYF4:Yb3+(58%),Tm3+@NaYF4@Au composite nanomaterials were designed and synthesized through condition optimization for the quantitative detection and catalytic reduction of 4-NP.
Collapse
Affiliation(s)
- Xia Xu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Meirong Fu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Bing Hu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Jitao Yang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Wenjun Gui
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Jinxiu Guo
- College of Science, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| |
Collapse
|
9
|
Miyake Y, Saeki A. Machine Learning-Assisted Development of Organic Solar Cell Materials: Issues, Analyses, and Outlooks. J Phys Chem Lett 2021; 12:12391-12401. [PMID: 34939806 DOI: 10.1021/acs.jpclett.1c03526] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonfullerene, a small molecular electron acceptor, has substantially improved the power conversion efficiency of organic photovoltaics (OPVs). However, the large structural freedom of π-conjugated polymers and molecules makes it difficult to explore with limited resources. Machine learning, which is based on rapidly growing artificial intelligence technology, is a high-throughput method to accelerate the speed of material design and process optimization; however, it suffers from limitations in terms of prediction accuracy, interpretability, data collection, and available data (particularly, experimental data). This recognition motivates the present Perspective, which focuses on utilizing the experimental data set for ML to efficiently aid OPV research. This Perspective discusses the trends in ML-OPV publications, the NFA category, and the effects of data size and explanatory variables (fingerprints or Mordred descriptors) on the prediction accuracy and explainability, which broadens the scope of ML and would be useful for the development of next-generation solar cell materials.
Collapse
Affiliation(s)
- Yuta Miyake
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Mahmood A, Irfan A, Wang JL. Developing Efficient Small Molecule Acceptors with sp 2 -Hybridized Nitrogen at Different Positions by Density Functional Theory Calculations, Molecular Dynamics Simulations and Machine Learning. Chemistry 2021; 28:e202103712. [PMID: 34767281 DOI: 10.1002/chem.202103712] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Chemical structure of small molecule acceptors determines their performance in organic solar cells. Multiscale simulations are necessary to avoid trial-and-error based design, ultimately to save time and resources. In current study, the effect of sp2 -hybridized nitrogen substitution at the inner or the outmost position of central core, side chain, and terminal group of small molecule acceptors is investigated using multiscale computational modelling. Quantum chemical analysis is used to study the electronic behavior. Nitrogen substitution at end-capping has significantly decreased the electron-reorganization energy. No big change is observed in transfer integral and excited state behavior. However, nitrogen substitution at terminal group position is good way to improve electron-mobility. Power conversion efficiency (PCE) of newly designed acceptors is predicted using machine learning. Molecular dynamics simulations are also performed to explore the dynamics of acceptor and their blends with PBDB-T polymer donor. Florgy-Huggins parameter is calculated to study the mixing of designed small molecule acceptors with PBDB-T. Radial distribution function has indicated that PBDB-T has a closer packing with N3 and N4. From all analysis, it is found that nitrogen substitution at end-capping group is a better strategy to design efficient small molecule acceptors.
Collapse
Affiliation(s)
- Asif Mahmood
- Department Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Jin-Liang Wang
- Department Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
11
|
Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102420. [PMID: 34464466 DOI: 10.1002/adma.202102420] [Citation(s) in RCA: 388] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Improving power conversion efficiency (PCE) is important for broadening the applications of organic photovoltaic (OPV) cells. Here, a maximum PCE of 19.0% (certified value of 18.7%) is achieved in single-junction OPV cells by combining material design with a ternary blending strategy. An active layer comprising a new wide-bandgap polymer donor named PBQx-TF and a new low-bandgap non-fullerene acceptor (NFA) named eC9-2Cl is rationally designed. With optimized light utilization, the resulting binary cell exhibits a good PCE of 17.7%. An NFA F-BTA3 is then added to the active layer as a third component to simultaneously improve the photovoltaic parameters. The improved light unitization, cascaded energy level alignment, and enhanced intermolecular packing result in open-circuit voltage of 0.879 V, short-circuit current density of 26.7 mA cm-2 , and fill factor of 0.809. This study demonstrates that further improvement of PCEs of high-performance OPV cells requires fine tuning of the electronic structures and morphologies of the active layers.
Collapse
Affiliation(s)
- Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinses Academy of Sciences, Beijing, 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Ling Hong
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinses Academy of Sciences, Beijing, 100049, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yunfei Zu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinses Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinzhao Qin
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinses Academy of Sciences, Beijing, 100049, China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhihao Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Chang He
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhixiang Wei
- School of Chemistry and Chemical Engineering, University of Chinses Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinses Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Raheem AA, Murugan P, Shanmugam R, Praveen C. Azulene Bridged π-Distorted Chromophores: The Influence of Structural Symmetry on Optoelectrochemical and Photovoltaic Parameters. Chempluschem 2021; 86:1451-1460. [PMID: 34648248 DOI: 10.1002/cplu.202100392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Conjugated chromophores possessing π-twisted functionality such as tetracyanobutadiene (TCBD) have emerged as promising active layer materials for organic photovoltaics (OPVs). In this study, we disclose the synthesis of two azulenyl chromophores containing one and two TCBD groups. The symmetrical and unsymmetrical structural characteristics of these molecules inflict dissimilar optoelectronic and electrochemical properties. Based on molar absorptivity, aggregation behavior, HOMO-LUMO energies and other quantum chemical parameters, the symmetrical molecule (TATC2) appears to be a better non-fullerene acceptor (NFA) compared to its unsymmetrical counterpart (TATC1). For instance, higher absorptivity and deeper HOMO-LUMO levels for TATC2 (23950 M-1 cm-1 ; -6.01 eV/-3.86 eV) over TATC1 (12200 M1 cm-1 ; -5.46 eV/-3.64 eV) was observed. Validating this structure-property relationship on solar cell prototypes exhibited higher photovoltaic parameters (VOC =0.54 V, FF=0.48, JSC =6.42 mA/cm2 ) for TATC2 than TATC1 (VOC =0.47 V, FF=0.38, JSC =5.77 mA/cm2 ). Though the device parameters are not high, this work uncovers the intrinsic properties of azulene-tethered twisted chromophores as potential π-semiconductor choice for NFA solar cells. In particular, this report explores the utility of azulene-based π-twisted semiconductors as acceptor material for OPVs with cell efficiencies of 1.70 and 1.04 % for TATC2 and TATC1 respectively.
Collapse
Affiliation(s)
- Abbasriyaludeen Abdul Raheem
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| | - Palanichamy Murugan
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| | - Ramasamy Shanmugam
- Department of Chemistry, Thiagarajar College, Madurai-625009, Madurai District, Tamil Nadu, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| |
Collapse
|
13
|
Haque A, El Moll H, Alenezi KM, Khan MS, Wong WY. Functional Materials Based on Cyclometalated Platinum(II) β-Diketonate Complexes: A Review of Structure-Property Relationships and Applications. MATERIALS 2021; 14:ma14154236. [PMID: 34361430 PMCID: PMC8347388 DOI: 10.3390/ma14154236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
Square planar organoplatinum(II) complexes have garnered immense interest in the area of materials research. The combination of the Pt(II) fragment with mono-, bi- tri- and tetradentate organic ligands gives rise to a large variety of complexes with intriguing properties, especially cyclometalated Pt(II) complexes in which ligands are connected through covalent bonds demonstrate higher stability, excellent photoluminescence properties, and diverse applications. The properties and applications of the Pt(II)-based materials can be smartly fine-tuned via a judicious selection of the cyclometalating as well as ancillary ligands. In this review, attempts have been made to provide a brief review of the recent developments of neutral Pt(II) organometallic complexes bearing bidentate cyclometalating ligands and β-diketonate ancillary ligands, i.e., (C^N)Pt(O^O) and (C^C)Pt(O^O) derivatives. Both small (monomeric, dimeric) and large (polymeric) materials have been considered. We critically assessed the role of functionalities (ligands) on photophysical properties and their impact on applications.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia; (H.E.M.); (K.M.A.)
- Correspondence: (A.H.); (M.S.K.); (W.-Y.W.)
| | - Hani El Moll
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia; (H.E.M.); (K.M.A.)
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia; (H.E.M.); (K.M.A.)
| | - Muhammad S. Khan
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Oman
- Correspondence: (A.H.); (M.S.K.); (W.-Y.W.)
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Correspondence: (A.H.); (M.S.K.); (W.-Y.W.)
| |
Collapse
|
14
|
Yan J, Rezasoltani E, Azzouzi M, Eisner F, Nelson J. Influence of static disorder of charge transfer state on voltage loss in organic photovoltaics. Nat Commun 2021; 12:3642. [PMID: 34131145 PMCID: PMC8206127 DOI: 10.1038/s41467-021-23975-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Spectroscopic measurements of charge transfer (CT) states provide valuable insight into the voltage losses in organic photovoltaics (OPVs). Correct interpretation of CT-state spectra depends on knowledge of the underlying broadening mechanisms, and the relative importance of molecular vibrational broadening and variations in the CT-state energy (static disorder). Here, we present a physical model, that obeys the principle of detailed balance between photon absorption and emission, of the impact of CT-state static disorder on voltage losses in OPVs. We demonstrate that neglect of CT-state disorder in the analysis of spectra may lead to incorrect estimation of voltage losses in OPV devices. We show, using measurements of polymer:non-fullerene blends of different composition, how our model can be used to infer variations in CT-state energy distribution that result from variations in film microstructure. This work highlights the potential impact of static disorder on the characteristics of disordered organic blend devices.
Collapse
Affiliation(s)
- Jun Yan
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, UK.
| | - Elham Rezasoltani
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, UK
| | - Mohammed Azzouzi
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, UK
| | - Flurin Eisner
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, UK
| | - Jenny Nelson
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, UK.
| |
Collapse
|
15
|
Sánchez F, Sánchez V, Wang C. Coarse-Grained Quantum Theory of Organic Photovoltaic Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:495. [PMID: 33669280 PMCID: PMC7920083 DOI: 10.3390/nano11020495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
Understanding the exciton dissociation process in organic solar cells is a fundamental issue for the design of high-performance photovoltaic devices. In this article, a parameterized quantum theory based on a coarse-grained tight-binding model plus non-local electron-hole interactions is presented, while the diffusion and recombination of excitons are studied in a square lattice of excitonic states, where a real-space renormalization method on effective chains has been used. The Hamiltonian parameters are determined by fitting the measured quantum efficiency spectra and the theoretical short-circuit currents without adjustable parameters show a good agreement with the experimental ones obtained from several polymer:fullerene and polymer:polymer heterojunctions. Moreover, the present study reveals the degree of polymerization and the true driving force at donor-acceptor interface in each analyzed organic photovoltaic device.
Collapse
Affiliation(s)
- Fernando Sánchez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Vicenta Sánchez
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Chumin Wang
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
16
|
Wang T, Brédas JL. Organic Photovoltaics: Understanding the Preaggregation of Polymer Donors in Solution and Its Morphological Impact. J Am Chem Soc 2021; 143:1822-1835. [DOI: 10.1021/jacs.0c09542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tonghui Wang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States
| |
Collapse
|
17
|
Zhang ZG, Bai Y, Li Y. Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2496-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Gao M, Liang Z, Geng Y, Ye L. Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells. Chem Commun (Camb) 2020; 56:12463-12478. [PMID: 32969427 DOI: 10.1039/d0cc04869k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polymer solar cells (PSCs) based on polymer donors and nonfullerene small molecule acceptors are a very attractive technology for solar energy conversion, and their performance is heavily determined by film morphology. It is of considerable interest to reveal instructive morphology-performance relationships of these blends. This feature article discusses the recent advances in analysing the morphology formation of nonfullerene PSCs with an effective polymer thermodynamic quantity, i.e., Flory-Huggins interaction parameter χ. In particular, guidelines of high and low χ systems are summarized. The fundamental understanding of χ and its correlations to film morphology and photovoltaic device parameters is of utmost relevance for providing essential material design criteria, establishing suitable morphology processing guidelines, and thus advancing the practical applications of PSCs based on nonfullerene acceptors.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Ziqi Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China. and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|