1
|
Feng Y, Wang H, Chen T, Lopez-Haro M, He F, He Z, Marini C, Lo BTW, Liu L. Water-promoted oxidative coupling of aromatics with subnanometer palladium clusters confined in zeolites. Nat Commun 2024; 15:9373. [PMID: 39477927 PMCID: PMC11525991 DOI: 10.1038/s41467-024-53475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
A fundamental understanding of the active sites in working catalysts can guide the rational design of new catalysts with improved performances. In this work, we have followed the evolution of homogeneous and heterogeneous Pd catalysts under the reaction conditions for aerobic oxidative coupling of toluene for the production of 4,4'-bitolyl. We have found that subnanometer Pd clusters made with a few Pd atoms are the working active sites in both homogeneous and heterogeneous catalytic systems. Moreover, water can promote the activity of Pd clusters by nearly one-order magnitude for oxidative coupling reaction by facilitating the activation of O2. These new insights lead to the preparation of a catalyst made with Pd clusters supported on a two-dimensional zeolite, which expands the scope of the oxidative coupling of aromatics to larger substrates.
Collapse
Affiliation(s)
- Yunchao Feng
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Hongtao Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Tianxiang Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Kowloon, Hong Kong, China
| | - Miguel Lopez-Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510, Spain
| | - Feng He
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Zhe He
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Carlo Marini
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Benedict Tsz Woon Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Kowloon, Hong Kong, China
| | - Lichen Liu
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
2
|
Ruíz-Baltazar ÁDJ. Advancements in nanoparticle-modified zeolites for sustainable water treatment: An interdisciplinary review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174373. [PMID: 38964399 DOI: 10.1016/j.scitotenv.2024.174373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The contamination of water sources with heavy metals, dyes, and other pollutants poses significant challenges to environmental sustainability and public health. Traditional water treatment methods often exhibit limitations in effectively addressing these complex contaminants. In response, recent developments in nanotechnology have catalyzed the exploration of novel materials for water remediation, with nanoparticle-doped zeolites emerging as a promising solution. This comprehensive review synthesizes current literature on the integration of nanoparticles into zeolite frameworks for enhanced contaminant removal in water treatment applications. We delve into synthesis methodologies, elucidate mechanistic insights, and evaluate the efficacy of nanoparticle-doped zeolites in targeting specific pollutants, while also assessing considerations of material stability and environmental impact. The review underscores the superior adsorptive and catalytic properties of nanoparticle-doped zeolites, owing to their high surface area, tailored porosity, and enhanced ion-exchange capabilities. Furthermore, we highlight recent advancements in heavy metal and organic pollutant uptake facilitated by these materials. Additionally, we explore the catalytic degradation of contaminants through advanced oxidation processes, demonstrating the multifunctionality of nanoparticle-doped zeolites in water treatment. By providing a comprehensive analysis of existing research, this review aims to guide future developments in the field, promoting the sustainable utilization of nanoparticle-doped zeolites as efficient and versatile materials for water remediation endeavors.
Collapse
Affiliation(s)
- Álvaro de Jesús Ruíz-Baltazar
- CONAHCYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
3
|
Kiani D, Wachs IE. The Conundrum of "Pair Sites" in Langmuir-Hinshelwood Reaction Kinetics in Heterogeneous Catalysis. ACS Catal 2024; 14:10260-10270. [PMID: 38988651 PMCID: PMC11232024 DOI: 10.1021/acscatal.4c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Understanding reaction kinetics is crucial for designing and applying heterogeneous catalytic processes in chemical and energy conversion. Here, we revisit the Langmuir-Hinshelwood (L-H) kinetic model for bimolecular surface reactions, originally formulated for metal catalysts, assuming immobile adsorbates on neighboring pair sites, with the rate varying linearly with the density of surface sites (sites per unit area); r ∝ [*]o 1. Supported metal oxide catalysts, however, offer systematic control over [*]o through variation of the active two-dimensional metal oxide loading in the submonolayer region. Various reactions catalyzed by supported metal oxides are analyzed, such as supported VO x catalysts, including methanol oxidation, oxidative dehydrogenation of propane and ethane, SO2 oxidation to SO3, propene oxidation to acrolein, n-butane oxidation to maleic anhydride, and selective catalytic reduction of nitric oxide with ammonia. The analysis reveals diverse dependencies of reaction rate on [*]o for these surface reactions, with r ∝ [*]o n , where n equals 1 for reactions with a unimolecular rate-determining step and 2 for those with a bimolecular rate-limiting step or exchange of more than 2 electrons. We propose refraining from a priori assumptions about the nature and density of surface sites or adsorbate behavior, advocating instead for data-driven elucidation of kinetics based on the density of surface sites, adsorbate coverage, etc. Additionally, recent studies on catalytic surface mechanisms have shed light on nonadjacent catalytic sites catalyzing surface reactions in contrast to the traditional requirement of adjacent/pair sites. These findings underscore the need for a more nuanced approach in modeling heterogeneous catalysis, especially supported metal oxide catalysts, encouraging reliance on experimental data over idealized assumptions that are often difficult to justify.
Collapse
Affiliation(s)
- Daniyal Kiani
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Israel E. Wachs
- Operando
Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical
and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Wang C, Zheng M, Hu M, Cai W, Chu Y, Wang Q, Xu J, Deng F. Unraveling Spatially Dependent Hydrophilicity and Reactivity of Confined Carbocation Intermediates during Methanol Conversion over ZSM-5 Zeolite. J Am Chem Soc 2024; 146:8688-8696. [PMID: 38482699 DOI: 10.1021/jacs.4c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Carbocations play a pivotal role as reactive intermediates in zeolite-catalyzed methanol-to-hydrocarbon (MTH) transformations. However, the interaction between carbocations and water vapor and its subsequent effects on catalytic performance remain poorly understood. Using micro-magnetic resonance imaging (μMRI) and solid-state NMR techniques, this work investigates the hydrophilic behavior of cyclopentenyl cations within ZSM-5 pores under vapor conditions. We show that the polar cationic center of cyclopentenyl cations readily initiates water nucleus formation through water molecule capture. This leads to an inhomogeneous water adsorption gradient along the axial positions of zeolite, correlating with the spatial distribution of carbocation concentrations. The adsorbed water promotes deprotonation and aromatization of cyclopentenyl cations, significantly enhancing the aromatic product selectivity in MTH catalysis. These results reveal the important influence of adsorbed water in modulating the carbocation reactivity within confined zeolite pores.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingji Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Liu Q, van Bokhoven JA. Water structures on acidic zeolites and their roles in catalysis. Chem Soc Rev 2024; 53:3065-3095. [PMID: 38369933 DOI: 10.1039/d3cs00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The local reaction environment of catalytic active sites can be manipulated to modify the kinetics and thermodynamic properties of heterogeneous catalysis. Because of the unique physical-chemical nature of water, heterogeneously catalyzed reactions involving specific interactions between water molecules and active sites on catalysts exhibit distinct outcomes that are different from those performed in the absence of water. Zeolitic materials are being applied with the presence of water for heterogeneous catalytic reactions in the chemical industry and our transition to sustainable energy. Mechanistic investigation and in-depth understanding about the behaviors and the roles of water are essentially required for zeolite chemistry and catalysis. In this review, we focus on the discussions of the nature and structures of water adsorbed/stabilized on Brønsted and Lewis acidic zeolites based on experimental observations as well as theoretical calculation results. The unveiled functions of water structures in determining the catalytic efficacy of zeolite-catalyzed reactions have been overviewed and the strategies frequently developed for enhancing the stabilization of zeolite catalysts are highlighted. Recent advancement will contribute to the development of innovative catalytic reactions and the rationalization of catalytic performances in terms of activity, selectivity and stability with the presence of water vapor or in condensed aqueous phase.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
6
|
Wang C, Chu Y, Xiong D, Wang H, Hu M, Wang Q, Xu J, Deng F. Water-Induced Micro-Hydrophobic Effect Regulates Benzene Methylation in Zeolite. Angew Chem Int Ed Engl 2024; 63:e202313974. [PMID: 37934010 DOI: 10.1002/anie.202313974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Water is a ubiquitous component in heterogeneous catalysis over zeolites and can significantly influence the catalyst performance. However, the detailed mechanism insights into zeolite-catalyzed reactions under microscale aqueous environment remain elusive. Here, using multiple dimensional solid-state NMR experiments coupled with ultrahigh magic angle spinning technique and theoretical simulations, we establish a fundamental understanding of the role of water in benzene methylation over ZSM-5 zeolite under water vapor conditions. We show that water competes with benzene for the active sites of zeolite and facilitates the bimolecular reaction mechanism. The growth of water clusters induces a micro-hydrophobic effect in zeolite pores, which reorients benzene molecules and drives their interactions with surface methoxy species (SMS) on zeolite. We identify the formation and evolution of active SMS-Benzene complexes in a microscale aqueous environment and demonstrate that their accumulation in zeolite pores boosts benzene conversion and methylation.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Danfeng Xiong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China) + These authors contributed equally to this work
| | - Haifeng Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China) + These authors contributed equally to this work
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
7
|
Hack JH, Chen Y, Lewis NHC, Kung HH, Tokmakoff A. Strong H-bonding from Zeolite Bro̷nsted Acid Site to Water: Origin of the Broad IR Doublet. J Phys Chem B 2023; 127:11054-11063. [PMID: 38109274 DOI: 10.1021/acs.jpcb.3c06819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Hydrogen bonding between water molecules and zeolite Bro̷nsted acid sites (BAS) has received much attention due to the significant influence of water on the adsorption and catalytic properties of these widely used porous materials. When a single water molecule is adsorbed at the BAS, the zeolite O-H stretch vibration decreases in frequency and splits into two extraordinarily broad bands peaked near 2500 and 2900 cm-1 in the infrared (IR) spectrum. This broad doublet feature is the predominant IR signature used to identify and interpret water-BAS H-bonding at low hydration levels, but the origin of the band splitting is not well understood. In this study, we used broadband two-dimensional infrared (2D IR) spectroscopy to investigate zeolite HZSM-5 prepared with a single water molecule per BAS. We find that the 2D IR spectrum is not explained by the most common interpretation of Fermi resonance coupling between the stretch and the bend of the BAS OH group, which predicts intense excited-state transitions that are absent from the experimental results. We present an alternative model of a double-well proton stretch potential, where the band splitting is caused by excited-state tunneling through the proton-transfer barrier. This one-dimensional model reproduces the basic experimental pattern of transition frequencies and amplitudes, suggesting that the doublet bands may originate from a highly anharmonic potential in which the excited state proton wave functions are delocalized over the H-bond between zeolite BAS and adsorbed H2O. Additional details about molecular orientation and coordination of the adsorbed water molecule are also resolved in the 2D IR spectroscopy.
Collapse
Affiliation(s)
- John H Hack
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yaxin Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Harold H Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Van Speybroeck V, Bocus M, Cnudde P, Vanduyfhuys L. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catal 2023; 13:11455-11493. [PMID: 37671178 PMCID: PMC10476167 DOI: 10.1021/acscatal.3c01945] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Indexed: 09/07/2023]
Abstract
Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps-diffusion, adsorption, and reaction-as they take place at the catalyst particle level.
Collapse
Affiliation(s)
| | - Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
9
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
10
|
Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
11
|
Liu Q, Pfriem N, Cheng G, Baráth E, Liu Y, Lercher JA. Maximum Impact of Ionic Strength on Acid-Catalyzed Reaction Rates Induced by a Zeolite Microporous Environment. Angew Chem Int Ed Engl 2023; 62:e202208693. [PMID: 36317985 PMCID: PMC10107796 DOI: 10.1002/anie.202208693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/14/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
The intracrystalline ionic environment in microporous zeolite can remarkably modify the excess chemical potential of adsorbed reactants and transition states, thereby influencing the catalytic turnover rates. However, a limit of the rate enhancement for aqueous-phase dehydration of alcohols appears to exist for zeolites with high ionic strength. The origin of such limitation has been hypothesized to be caused by the spatial constraints in the pores via, e.g., size exclusion effects. It is demonstrated here that the increase in turnover rate as well as the formation of a maximum and the rate drop are intrinsic consequences of the increasingly dense ionic environment in zeolite. The molecularly sized confines of zeolite create a unique ionic environment that monotonically favors the formation of alcohol-hydronium ion complexes in the micropores. The zeolite microporous environment determines the kinetics of catalytic steps and tailors the impact of ionic strength on catalytic rates.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Niklas Pfriem
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Guanhua Cheng
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Yue Liu
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiP. R. China
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA 99352USA
| |
Collapse
|
12
|
Pham TN, Nguyen V, Nguyen-Phu H, Wang B, Crossley S. Influence of Brønsted Acid Site Proximity on Alkane Cracking in MFI Zeolites. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tram N. Pham
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Vy Nguyen
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Huy Nguyen-Phu
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Steven Crossley
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| |
Collapse
|
13
|
Amoo C, Xing C, Tsubaki N, Sun J. Tandem Reactions over Zeolite-Based Catalysts in Syngas Conversion. ACS CENTRAL SCIENCE 2022; 8:1047-1062. [PMID: 36032758 PMCID: PMC9413433 DOI: 10.1021/acscentsci.2c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Syngas conversion can play a vital role in providing energy and chemical supplies while meeting environmental requirements as the world gradually shifts toward a net-zero. While prospects of this process cannot be doubted, there is a lingering challenge in distinct product selectivity over the bulk transitional metal catalysts. To advance research in this respect, composite catalysts comprising traditional metal catalysts and zeolites have been deployed to distinct product selectivity while suppressing side reactions. Zeolites are common but highly efficient materials used in the chemical industry for hydroprocessing. Combining the advantages of zeolites and some transition metal catalysts has promoted the catalytic production of various hydrocarbons (e.g., light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from syngas. In this outlook, a thorough revelation on recent progress in syngas conversion to various products over metal-zeolite composite catalysts is validated. The strategies adopted to couple the metal species and zeolite material into a composite as well as the consequential morphologies for specific product selectivity are highlighted. The key zeolite descriptors that influence catalytic performance, such as framework topologies, proximity and confinement effects, acidities and cations, pore systems, and particle sizes are discussed to provide a deep understanding of the significance of zeolites in syngas conversion. Finally, an outlook regarding challenges and opportunities for syngas conversion using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.
Collapse
Affiliation(s)
- Cederick
Cyril Amoo
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Xing
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Noritatsu Tsubaki
- Department
of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Jian Sun
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
14
|
A critical assessment of the roles of water molecules and solvated ions in acid-base-catalyzed reactions at solid-water interfaces. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Hu ZP, Han J, Wei Y, Liu Z. Dynamic Evolution of Zeolite Framework and Metal-Zeolite Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jingfeng Han
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
16
|
Shi Y, Weller AS, Blacker AJ, Dyer PW. Conversion of butanol to propene in flow: A triple dehydration, isomerisation and metathesis cascade. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
17
|
Abstract
Catalysis is at the core of chemistry and has been essential to make all the goods surrounding us, including fuels, coatings, plastics and other functional materials. In the near future, catalysis will also be an essential tool in making the shift from a fossil-fuel-based to a more renewable and circular society. To make this reality, we have to better understand the fundamental concept of the active site in catalysis. Here, we discuss the physical meaning - and deduce the validity and, therefore, usefulness - of some common approaches in heterogeneous catalysis, such as linking catalyst activity to a 'turnover frequency' and explaining catalytic performance in terms of 'structure sensitivity' or 'structure insensitivity'. Catalytic concepts from the fields of enzymatic and homogeneous catalysis are compared, ultimately realizing that the struggle that one encounters in defining the active site in most solid catalysts is likely the one we must overcome to reach our end goal: tailoring the precise functioning of the active sites with respect to many different parameters to satisfy our ever-growing needs. This article ends with an outlook of what may become feasible within the not-too-distant future with modern experimental and theoretical tools at hand.
Collapse
|
18
|
Shangguan Z, Yuan X, Jiang L, Zhao Y, Qin L, Zhou X, Wu Y, Chew JW, Wang H. Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Lin L, Ge Y, Zhang H, Wang M, Xiao D, Ma D. Heterogeneous Catalysis in Water. JACS AU 2021; 1:1834-1848. [PMID: 34841403 PMCID: PMC8611672 DOI: 10.1021/jacsau.1c00319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous catalytic processes produce the majority of the fuels and chemicals in the chemical industry and have kept improving the welfare of human beings for centuries. Although most of the heterogeneous catalytic reactions occur at the gas-solid interface, numerous cases have demonstrated that the condensed water near the active site and/or the aqueous phase merging the catalysts play positive roles in enhancing the performance of heterogeneous catalysts and creating novel catalytic conversion routes. We enumerate the traditional heterogeneous catalytic reactions that enable significant rate/selectivity promotion in the aqueous phase or adsorbed micro water environment and discuss the role of water in specific systems. Some of the novel heterogeneous reactions achieved with only the assistance of the aqueous phase have been summarized. The development of reactions with the participation of the aqueous phase/water and the investigation of the role of water in the heterogeneous catalytic reactions will open new horizons for catalysts with better activity, improved selectivity, and novel processes.
Collapse
Affiliation(s)
- Lili Lin
- Institute
of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis
Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s
Republic of China
| | - Yuzhen Ge
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, and BIC-ESAT, Peking
University, Beijing 100871, People’s Republic
of China
| | - Hongbo Zhang
- School
of Materials Science and Engineering & National Institute for
Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials
and Applications, Nankai University, Tianjin 300350, People’s Republic of China
| | - Meng Wang
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, and BIC-ESAT, Peking
University, Beijing 100871, People’s Republic
of China
| | - Dequan Xiao
- Center
for Integrative Materials Discovery, Department of Chemistry and Chemical
Engieering, University of New Haven, West Haven, Connecticut 06525, United States
| | - Ding Ma
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, and BIC-ESAT, Peking
University, Beijing 100871, People’s Republic
of China
| |
Collapse
|
20
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Dehydration of Fructose to 5-Hydroxymethylfurfural: Effects of Acidity and Porosity of Different Catalysts in the Conversion, Selectivity, and Yield. CHEMISTRY 2021. [DOI: 10.3390/chemistry3040087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is a demand for renewable resources, such as biomass, to produce compounds considered as platform molecules. This study deals with dehydration of fructose for the formation of 5-hydroxymethylfurfural (HMF), a feedstock molecule. Different catalysts (aluminosilicates, niobic acid, 12-tungstophosphoric acid—HPW, and supported HPW/Niobia) were studied for this reaction in an aqueous medium. The catalysts were characterized by XRD, FT-IR, N2 sorption at −196 °C and pyridine adsorption. It was evident that the nature of the sites (Brønsted and Lewis), strength, quantity and accessibility to the acidic sites are critical to the conversion and yield results. A synergic effect of acidity and mesoporous area are key factors affecting the activity and selectivity of the solid acids. Niobic acid (Nb2O5·nH2O) revealed the best efficiency (highest TON, yield, selectivity and conversion). It was determined that the optimum acidity strength of catalysts should be between 80 to 100 kJ mol−1, with about 0.20 to 0.30 mmol g−1 of acid sites, density about 1 site nm−2 and mesoporous area about 100 m2 g−1. These values fit well within the general order of the observed selectivity (i.e., Nb2O5 > HZSM-5 > 20%HPW/Nb2O5 > SiO2-Al2O3 > HY > HBEA).
Collapse
|
22
|
Çaǧlayan M, Paioni AL, Dereli B, Shterk G, Hita I, Abou-Hamad E, Pustovarenko A, Emwas AH, Dikhtiarenko A, Castaño P, Cavallo L, Baldus M, Chowdhury AD, Gascon J. Illuminating the Intrinsic Effect of Water Co-feeding on Methane Dehydroaromatization: A Comprehensive Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mustafa Çaǧlayan
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Alessandra Lucini Paioni
- NMR Spectroscopy group, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Büşra Dereli
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Genrikh Shterk
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Idoia Hita
- KAUST Catalysis Center (KCC), Multiscale Reaction Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Department, Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Alexey Pustovarenko
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Department, Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Alla Dikhtiarenko
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center (KCC), Multiscale Reaction Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Marc Baldus
- NMR Spectroscopy group, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Jorge Gascon
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
23
|
Mierczynski P, Szkudlarek L, Chalupka K, Maniukiewicz W, Wahono SK, Vasilev K, Szynkowska-Jozwik MI. The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction. MATERIALS 2021; 14:ma14092415. [PMID: 34066469 PMCID: PMC8124687 DOI: 10.3390/ma14092415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
This work provides valuable information about unexplored catalytic systems tested in the transesterification reaction of vegetable oil with methanol. It was demonstrated that natural zeolite treatment leads to enhanced catalytic activity and yield of biodiesel production. The activation of the catalytic material in a mixture of 5% H2-95% Ar resulted in an improvement of the values of the TG conversion and fatty acid methyl esters (FAME) yield. In addition, it was proven that the incorporation of CaO, MgO and SrO oxides onto the natural zeolite surface improves the TG conversion and FAME yield values in the transesterification reaction.
Collapse
Affiliation(s)
- Pawel Mierczynski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (L.S.); (K.C.); (W.M.); (M.I.S.-J.)
- Correspondence: ; Tel.: +48-42-631-3125
| | - Lukasz Szkudlarek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (L.S.); (K.C.); (W.M.); (M.I.S.-J.)
| | - Karolina Chalupka
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (L.S.); (K.C.); (W.M.); (M.I.S.-J.)
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (L.S.); (K.C.); (W.M.); (M.I.S.-J.)
| | - Satriyo K. Wahono
- Research Division for Natural Product Technology, Indonesian Institutes of Sciences, Jl. Jogja–Wonosari km 32, Gading, Playen, Gunungkidul, Yogyakarta 55861, Indonesia;
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia;
| | - Malgorzata I. Szynkowska-Jozwik
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (L.S.); (K.C.); (W.M.); (M.I.S.-J.)
| |
Collapse
|