1
|
Szymanski NJ, Nevatia P, Bartel CJ, Zeng Y, Ceder G. Autonomous and dynamic precursor selection for solid-state materials synthesis. Nat Commun 2023; 14:6956. [PMID: 37907493 PMCID: PMC10618174 DOI: 10.1038/s41467-023-42329-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Solid-state synthesis plays an important role in the development of new materials and technologies. While in situ characterization and ab-initio computations have advanced our understanding of materials synthesis, experiments targeting new compounds often still require many different precursors and conditions to be tested. Here we introduce an algorithm (ARROWS3) designed to automate the selection of optimal precursors for solid-state materials synthesis. This algorithm actively learns from experimental outcomes to determine which precursors lead to unfavorable reactions that form highly stable intermediates, preventing the target material's formation. Based on this information, ARROWS3 proposes new experiments using precursors it predicts to avoid such intermediates, thereby retaining a larger thermodynamic driving force to form the target. We validate this approach on three experimental datasets, containing results from over 200 synthesis procedures. In comparison to black-box optimization, ARROWS3 identifies effective precursor sets for each target while requiring substantially fewer experimental iterations. These findings highlight the importance of domain knowledge in optimization algorithms for materials synthesis, which are critical for the development of fully autonomous research platforms.
Collapse
Affiliation(s)
- Nathan J Szymanski
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Pragnay Nevatia
- Department of Chemical Engineering, UC Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Bartel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yan Zeng
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA, 94720, USA.
| | - Gerbrand Ceder
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Martin TB, Audus DJ. Emerging Trends in Machine Learning: A Polymer Perspective. ACS POLYMERS AU 2023; 3:239-258. [PMID: 37334191 PMCID: PMC10273415 DOI: 10.1021/acspolymersau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
In the last five years, there has been tremendous growth in machine learning and artificial intelligence as applied to polymer science. Here, we highlight the unique challenges presented by polymers and how the field is addressing them. We focus on emerging trends with an emphasis on topics that have received less attention in the review literature. Finally, we provide an outlook for the field, outline important growth areas in machine learning and artificial intelligence for polymer science and discuss important advances from the greater material science community.
Collapse
Affiliation(s)
- Tyler B. Martin
- National Institute of Standards
and Technology, Gaithersburg, Maryland20899, United States
| | - Debra J. Audus
- National Institute of Standards
and Technology, Gaithersburg, Maryland20899, United States
| |
Collapse
|
3
|
Volk AA, Epps RW, Yonemoto DT, Masters BS, Castellano FN, Reyes KG, Abolhasani M. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat Commun 2023; 14:1403. [PMID: 36918561 PMCID: PMC10015005 DOI: 10.1038/s41467-023-37139-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Closed-loop, autonomous experimentation enables accelerated and material-efficient exploration of large reaction spaces without the need for user intervention. However, autonomous exploration of advanced materials with complex, multi-step processes and data sparse environments remains a challenge. In this work, we present AlphaFlow, a self-driven fluidic lab capable of autonomous discovery of complex multi-step chemistries. AlphaFlow uses reinforcement learning integrated with a modular microdroplet reactor capable of performing reaction steps with variable sequence, phase separation, washing, and continuous in-situ spectral monitoring. To demonstrate the power of reinforcement learning toward high dimensionality multi-step chemistries, we use AlphaFlow to discover and optimize synthetic routes for shell-growth of core-shell semiconductor nanoparticles, inspired by colloidal atomic layer deposition (cALD). Without prior knowledge of conventional cALD parameters, AlphaFlow successfully identified and optimized a novel multi-step reaction route, with up to 40 parameters, that outperformed conventional sequences. Through this work, we demonstrate the capabilities of closed-loop, reinforcement learning-guided systems in exploring and solving challenges in multi-step nanoparticle syntheses, while relying solely on in-house generated data from a miniaturized microfluidic platform. Further application of AlphaFlow in multi-step chemistries beyond cALD can lead to accelerated fundamental knowledge generation as well as synthetic route discoveries and optimization.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA
| | - Robert W Epps
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA
| | - Daniel T Yonemoto
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Benjamin S Masters
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Kristofer G Reyes
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14260, USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
4
|
Sagmeister P, Ort FF, Jusner CE, Hebrault D, Tampone T, Buono FG, Williams JD, Kappe CO. Autonomous Multi-Step and Multi-Objective Optimization Facilitated by Real-Time Process Analytics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105547. [PMID: 35106974 PMCID: PMC8981902 DOI: 10.1002/advs.202105547] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Indexed: 05/04/2023]
Abstract
Autonomous flow reactors are becoming increasingly utilized in the synthesis of organic compounds, yet the complexity of the chemical reactions and analytical methods remains limited. The development of a modular platform which uses rapid flow NMR and FTIR measurements, combined with chemometric modeling, is presented for efficient and timely analysis of reaction outcomes. This platform is tested with a four variable single-step reaction (nucleophilic aromatic substitution), to determine the most effective optimization methodology. The self-optimization approach with minimal background knowledge proves to provide the optimal reaction parameters within the shortest operational time. The chosen approach is then applied to a seven variable two-step optimization problem (imine formation and cyclization), for the synthesis of the active pharmaceutical ingredient edaravone. Despite the exponentially increased complexity of this optimization problem, the platform achieves excellent results in a relatively small number of iterations, leading to >95% solution yield of the intermediate and up to 5.42 kg L-1 h-1 space-time yield for this pharmaceutically relevant product.
Collapse
Affiliation(s)
- Peter Sagmeister
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13Graz8010Austria
| | - Florian F. Ort
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
| | - Clemens E. Jusner
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13Graz8010Austria
| | - Dominique Hebrault
- Chemical Development USBoehringer Ingelheim Pharmaceuticals, Inc.900 Ridgebury RoadRidgefieldConnecticut06877USA
| | - Thomas Tampone
- Chemical Development USBoehringer Ingelheim Pharmaceuticals, Inc.900 Ridgebury RoadRidgefieldConnecticut06877USA
| | - Frederic G. Buono
- Chemical Development USBoehringer Ingelheim Pharmaceuticals, Inc.900 Ridgebury RoadRidgefieldConnecticut06877USA
| | - Jason D. Williams
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13Graz8010Austria
| | - C. Oliver Kappe
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28Graz8010Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13Graz8010Austria
| |
Collapse
|
5
|
Volk AA, Campbell ZS, Ibrahim MYS, Bennett JA, Abolhasani M. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Annu Rev Chem Biomol Eng 2022; 13:45-72. [PMID: 35259931 DOI: 10.1146/annurev-chembioeng-092120-024449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microfluidic devices and systems have entered many areas of chemical engineering, and the rate of their adoption is only increasing. As we approach and adapt to the critical global challenges we face in the near future, it is important to consider the capabilities of flow chemistry and its applications in next-generation technologies for sustainability, energy production, and tailor-made specialty chemicals. We present the introduction of microfluidics into the fundamental unit operations of chemical engineering. We discuss the traits and advantages of microfluidic approaches to different reactive systems, both well-established and emerging, with a focus on the integration of modular microfluidic devices into high-efficiency experimental platforms for accelerated process optimization and intensified continuous manufacturing. Finally, we discuss the current state and new horizons in self-driven experimentation in flow chemistry for both intelligent exploration through the chemical universe and distributed manufacturing. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Zachary S Campbell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Malek Y S Ibrahim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Jeffrey A Bennett
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| |
Collapse
|
6
|
Shekar V, Nicholas G, Ani Najeeb M, Zeile M, Yu V, Wang X, Slack D, Li Z, Nega PW, Chan E, Norquist AJ, Schrier J, Friedler SA. Active Meta-Learning for Predicting and Selecting Perovskite Crystallization Experiments. J Chem Phys 2022; 156:064108. [DOI: 10.1063/5.0076636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | | | - Vincent Yu
- Haverford College, United States of America
| | | | | | - Zhi Li
- E O Lawrence Berkeley National Laboratory, United States of America
| | - Philip W. Nega
- E O Lawrence Berkeley National Laboratory, United States of America
| | - Emory Chan
- Lawrence Berkeley National Laboratory, United States of America
| | | | - Joshua Schrier
- Department of Chemistry, Fordham University - Rose Hill Campus, United States of America
| | | |
Collapse
|
7
|
Volk AA, Epps RW, Yonemoto D, Castellano FN, Abolhasani M. Continuous biphasic chemical processes in a four-phase segmented flow reactor. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00247c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A four-phase segmented flow regime for continuous biphasic reaction processes is introduced, characterized over 1500 automatically conducted experiments, and used for biphasic ligand exchange of CdSe quantum dots.
Collapse
Affiliation(s)
- Amanda A. Volk
- Department of Chemical and Biomolecular Engineering
- North Carolina State University
- Raleigh
- USA
| | - Robert W. Epps
- Department of Chemical and Biomolecular Engineering
- North Carolina State University
- Raleigh
- USA
| | - Daniel Yonemoto
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|