1
|
Sumner EE, Morgan JW, Venn SE, Camac JS. Survival and growth of a high-mountain daisy transplanted outside its local range, and implications for climate-induced distribution shifts. AOB PLANTS 2022; 14:plac014. [PMID: 35498909 PMCID: PMC9049260 DOI: 10.1093/aobpla/plac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Field transplant experiments can improve our understanding of the effects of climate on distributions of plants versus a milieu of biotic factors which may be mediated by climate. We use a transplant experiment to test how survival and growth of a mountain-top daisy (Podolepis robusta), when planted within and outside its current local range, varies as a function of individual plant size, elevation, aspect and the presence of other vegetation. We expected a home-site advantage for the species, with highest survival and growth within the species' current elevational limits, and a decline in vital rates above (due to physiological limitations) and below (due to competition with near-neighbours) these limits. Transplant survival during the beginning of the census was high (89 %), though by the third growing season, 36 % of initial transplants were remaining. Elevation had a significant negative effect on individual mortality rates; plants growing at higher elevations had a lower estimated hazard rate and thus, higher survival relative to those planted at elevations below the current lower limit of the distribution. By contrast, we detected no significant effect of elevation on growth rates. Small vegetation gaps had no effect on growth rates, though we found a negative, but non-significant, effect on mortality rates. Aspect had a very strong impact on growth. Plants transplanted to cool aspects had a significantly lower growth rate relative to transplants growing on a warm aspect. Conversely, aspect was not a significant predictor of individual mortality rates. Restrictions on the local distribution of P. robusta appear to be governed by mortality drivers at lower elevation and by growth drivers associated with aspect. We highlight that our ability to understand the drivers of distributions in current and future climates will be limited if contextual- and individual-level plant responses remain understudied.
Collapse
Affiliation(s)
- Emma E Sumner
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC 3086, Australia
- Centre for Integrative Ecology, Deakin University, Burwood, VIC 3125, Australia
| | - John W Morgan
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC 3086, Australia
| | - Susanna E Venn
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Centre for Integrative Ecology, Deakin University, Burwood, VIC 3125, Australia
| | - James S Camac
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Shepard ID, Wissinger SA, Greig HS. Elevation alters outcome of competition between resident and range-shifting species. GLOBAL CHANGE BIOLOGY 2021; 27:270-281. [PMID: 33064868 DOI: 10.1111/gcb.15401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Species' geographic range shifts toward higher latitudes and elevations are among the most frequently reported consequences of climate change. However, the role of species interactions in setting range margins remains poorly understood. We used cage experiments in ponds to test competing hypotheses about the role of abiotic and biotic mechanisms for structuring range boundaries of an upslope range-shifting caddisfly Limnephilus picturatus. We found that competition with a ubiquitous species Limnephilus externus significantly decreased L. picturatus survival and emergence at subalpine elevations supporting the notion that species interactions play a critical role in determining upslope range limits. However, without competitors, L. picturatus survival was greater at high-elevation than low-elevation sites. This was contrary to decreases in body mass (a proxy for fecundity) with elevation regardless of the presence of competitors. We ultimately show that species interactions can be important for setting upslope range margins. Yet, our results also highlight the complications in defining what may be abiotically stressful for this species and the importance of considering multiple demographic variables. Understanding how species ranges will respond in a changing climate will require quantifying species interactions and how they are influenced by the abiotic context in which they play out.
Collapse
Affiliation(s)
- Isaac D Shepard
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Ecology and Environmental Sciences, University of Maine, Orono, ME, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Scott A Wissinger
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- Biology and Environmental Science Departments, Allegheny College, Meadville, PA, USA
| | - Hamish S Greig
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Ecology and Environmental Sciences, University of Maine, Orono, ME, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| |
Collapse
|
3
|
Sirén APK, Morelli TL. Interactive range-limit theory (iRLT): An extension for predicting range shifts. J Anim Ecol 2020; 89:940-954. [PMID: 31758805 PMCID: PMC7187220 DOI: 10.1111/1365-2656.13150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022]
Abstract
A central theme of range-limit theory (RLT) posits that abiotic factors form high-latitude/altitude limits, whereas biotic interactions create lower limits. This hypothesis, often credited to Charles Darwin, is a pattern widely assumed to occur in nature. However, abiotic factors can impose constraints on both limits and there is scant evidence to support the latter prediction. Deviations from these predictions may arise from correlations between abiotic factors and biotic interactions, as a lack of data to evaluate the hypothesis, or be an artifact of scale. Combining two tenets of ecology-niche theory and predator-prey theory-provides an opportunity to understand how biotic interactions influence range limits and how this varies by trophic level. We propose an expansion of RLT, interactive RLT (iRLT), to understand the causes of range limits and predict range shifts. Incorporating the main predictions of Darwin's hypothesis, iRLT hypothesizes that abiotic and biotic factors can interact to impact both limits of a species' range. We summarize current thinking on range limits and perform an integrative review to evaluate support for iRLT and trophic differences along range margins, surveying the mammal community along the boreal-temperate and forest-tundra ecotones of North America. Our review suggests that range-limit dynamics are more nuanced and interactive than classically predicted by RLT. Many (57 of 70) studies indicate that biotic factors can ameliorate harsh climatic conditions along high-latitude/altitude limits. Conversely, abiotic factors can also mediate biotic interactions along low-latitude/altitude limits (44 of 68 studies). Both scenarios facilitate range expansion, contraction or stability depending on the strength and the direction of the abiotic or biotic factors. As predicted, biotic interactions most often occurred along lower limits, yet there were trophic differences. Carnivores were only limited by competitive interactions (n = 25), whereas herbivores were more influenced by predation and parasitism (77%; 55 of 71 studies). We highlight how these differences may create divergent range patterns along lower limits. We conclude by (a) summarizing iRLT; (b) contrasting how our model system and others fit this hypothesis and (c) suggesting future directions for evaluating iRLT.
Collapse
Affiliation(s)
- Alexej P. K. Sirén
- Department of Interior Northeast Climate Adaptation Science CenterU.S. Geological SurveyAmherstMAUSA
- Department of Environmental ConservationUniversity of MassachusettsAmherstMAUSA
| | - Toni Lyn Morelli
- Department of Interior Northeast Climate Adaptation Science CenterU.S. Geological SurveyAmherstMAUSA
- Department of Environmental ConservationUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
4
|
|