1
|
Finnerty PB, Possell M, Banks PB, Orlando CG, Price CJ, Shrader AM, McArthur C. Olfactory misinformation provides refuge to palatable plants from mammalian browsing. Nat Ecol Evol 2024; 8:645-650. [PMID: 38307993 PMCID: PMC11009103 DOI: 10.1038/s41559-024-02330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024]
Abstract
Mammalian herbivores browse palatable plants of ecological and economical value. Undesirable neighbours can reduce browsing to these plants by providing 'associational refuge', but they can also compete for resources. Here we recreated the informative odour emitted by undesirable plants. We then tested whether this odour could act as virtual neighbours, providing browsing refuge to palatable eucalyptus tree seedlings. We found that protection using this method was equivalent to protection provided by real plants. Palatable seedlings were 17-20 times more likely to be eaten by herbivores without virtual, or real, neighbours. Because many herbivores use plant odour to forage, virtual neighbours could provide a useful practical management approach to help protect valued plants.
Collapse
Affiliation(s)
- Patrick B Finnerty
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Catherine J Price
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Adrian M Shrader
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Clare McArthur
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Patterson CR, Lustig A, Seddon PJ, Wilson DJ, van Heezik Y. Eradicating an invasive mammal requires local elimination and reduced reinvasion from an urban source population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2949. [PMID: 38442922 DOI: 10.1002/eap.2949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 03/07/2024]
Abstract
Invasive mammal eradications are increasingly attempted across large, complex landscapes. Sequentially controlled management zones can be at risk of reinvasion from adjacent uncontrolled areas, and managers must weigh the relative benefits of ensuring complete elimination from a zone or minimizing reinvasion risk. This is complicated in urban areas, where habitat heterogeneity and a lack of baseline ecological knowledge increase uncertainty. We applied a spatial agent-based model to predict the reinvasion of a well-studied species, the brushtail possum (Trichosurus vulpecula), across an urban area onto a peninsula that is the site of an elimination campaign in Aotearoa New Zealand. We represented fine-scale urban habitat heterogeneity in a land cover layer and tested management scenarios that varied four factors: the density of possums remaining following an elimination attempt, the maintenance trap density on the peninsula, and effort expended toward preventing reinvasion by means of a high-density trap buffer at the peninsula isthmus or control of the source population adjacent to the peninsula. We found that achieving complete elimination on the peninsula was crucial to avoid rapid repopulation. The urban isthmus was predicted to act as a landscape barrier and restrict immigration onto the peninsula, but reliance on this barrier alone would fail to prevent repopulation. In combination, complete elimination, buffer zone, and source population control could reduce the probability of possum repopulation to near zero. Our findings support urban landscape barriers as one tool for sequential invasive mammal elimination but reaffirm that novel methods to expose residual individuals to control will be necessary to secure elimination in management zones. Work to characterize the urban ecology of many invasive mammals is still needed.
Collapse
Affiliation(s)
| | - Audrey Lustig
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
- Te Pūnaha Matatini: The Centre for Complex Systems and Networks, Auckland, New Zealand
| | - Philip J Seddon
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
3
|
Enari H, Enari HS. Bioacoustic monitoring to determine addiction levels of primates to the human sphere: A feasibility study on Japanese macaques. Am J Primatol 2023; 85:e23558. [PMID: 37781937 DOI: 10.1002/ajp.23558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Some nonhuman primate species, whose original habitats have been reclaimed by artificial activities, have acquired boldness toward humans which is evident based on the diminished frequency of escape behaviors. Eventually, such species have become regular users of human settlements, and are referred to as "urban primates." Considering this, we developed a noninvasive technique based on bioacoustics to provide a transparent assessment of troop addiction levels in anthropogenic environments, which are determined by the dependence on agricultural crops and human living sphere for their diets and daily ranging, respectively. We attempted to quantify the addiction levels based on the boldness of troops when raiding settlements, characterized by a "landscape of fear" because of the presence of humans as predators. We hypothesized that the boldness of troops could be measured using two indices: the frequency of raiding events on settlements and the amount of time spent there. For hypothesis testing, we devised an efficient method to measure these two indices using sound cues (i.e., spontaneous calls) for tracing troop movements that are obtainable throughout the day from most primate species (e.g., contact calls). We conducted a feasibility study of this assessment procedure, targeting troops of Japanese macaques (Macaca fuscata). For this study, we collected 346 recording weeks of data using autonomous recorders from 24 troops with different addiction levels during the nonsnowy seasons. The results demonstrated that troops that reached the threshold level, at which radical interventions including mass culling of troop members is officially permitted, could be readily identified based on the following behavioral characteristics: troop members raiding settlements two or three times per week and mean time spent in settlements per raiding event exceeding 0.4 h. Thus, bioacoustic monitoring could become a valid option to ensure the objectivity of policy judgment in urban primate management.
Collapse
Affiliation(s)
- Hiroto Enari
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| | - Haruka S Enari
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
4
|
Harris H, Wat KKY, Banks PB, Greenville A, McArthur C. Grow up, be persistent, and stay focused: keys for solving foraging problems by free-ranging possums. Behav Ecol 2023; 34:790-803. [PMID: 38046238 PMCID: PMC10690113 DOI: 10.1093/beheco/arad054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 12/05/2023] Open
Abstract
Individuals within a species often vary in both their problem-solving approach and ability, affecting their capacity to access novel food resources. Testing problem-solving in free-ranging individuals is crucial for understanding the fundamental ecological implications of problem-solving capacity. To examine the factors affecting problem-solving in free-ranging animals, we presented three food-extraction tasks of increasing difficulty to urban common brushtail possums (Trichosurus vulpecula). We quantified two measures of problem-solving performance: trial outcome (success/failure) and time to solve and tested the influence of a range of potential drivers, including individual traits (personality, body weight, sex, and age), mechanistic behaviors that quantify problem-solving approach (work time, functional behavior time, behavioral diversity, and flexibility), and prior experience with the puzzles. We found that mechanistic behaviors were key drivers of performance. Individuals displaying greater persistence (higher work and functional behavior time) were more likely to solve a food-extraction task on their first attempt. Individuals also solved problems faster if they were more persistent and had lower behavioral flexibility. Personality indirectly affected time to solve one of the three problems by influencing time allocated to functional behaviors. Finally, adults solved the most difficult problem faster than juveniles. Overall, our study provides rare insight into the drivers underlying the problem-solving performance of wild animals. Such insight could be used to improve management strategies and conservation efforts, such as food or bait deployment, tailored to suit the innovative foraging abilities of target individuals in new and changing environments.
Collapse
Affiliation(s)
- Hannah Harris
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Katie K Y Wat
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Aaron Greenville
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Clare McArthur
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Huang C, Zhou K, Huang Y, Fan P, Liu Y, Lee TM. Insights into the coexistence of birds and humans in cropland through meta-analyses of bird exclosure studies, crop loss mitigation experiments, and social surveys. PLoS Biol 2023; 21:e3002166. [PMID: 37410698 DOI: 10.1371/journal.pbio.3002166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
Birds share lands with humans at a substantial scale and affect crops. Yet, at a global scale, systematic evaluations of human-bird coexistence in croplands are scarce. Here, we compiled and used meta-analysis approaches to synthesize multiple global datasets of ecological and social dimensions to understand this complex coexistence system. Our result shows that birds usually increase woody, but not herbaceous, crop production, implying that crop loss mitigation efforts are critical for a better coexistence. We reveal that many nonlethal technical measures are more effective in reducing crop loss, e.g., using scaring devices and changing sow practices, than other available methods. Besides, we find that stakeholders from low-income countries are more likely to perceive the crop losses caused by birds and are less positive toward birds than those from high-income ones. Based on our evidence, we identified potential regional clusters, particularly in tropical areas, for implementing win-win coexistence strategies. Overall, we provide an evidence-based knowledge flow and solutions for stakeholders to integrate the conservation and management of birds in croplands.
Collapse
Affiliation(s)
- Cheng Huang
- State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, China
| | - Kaiwen Zhou
- State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Huang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Pengfei Fan
- State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Tien Ming Lee
- State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
Detection parameters for managing invasive rats in urban environments. Sci Rep 2022; 12:16520. [PMID: 36192476 PMCID: PMC9530159 DOI: 10.1038/s41598-022-20677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Effective mitigation of the impacts of invasive ship rats (Rattus rattus) requires a good understanding of their ecology, but this knowledge is very sparse for urban and peri-urban areas. We radiomarked ship rats in Wellington, New Zealand, to estimate detection parameters (σ, ε0, θ, and g0) that describe the process of an animal encountering a device (bait stations, chew cards and WaxTags) from a distance, and then approaching it and deciding whether to interact with it. We used this information in simulation models to estimate optimal device spacing for eradicating ship rats from Wellington, and for confirming eradication. Mean σ was 25.37 m (SD = 11.63), which equates to a circular home range of 1.21 ha. The mean nightly probability of an individual encountering a device at its home range center (ε0) was 0.38 (SD = 0.11), whereas the probability of interacting with the encountered device (θ) was 0.34 (SD = 0.12). The derived mean nightly probability of an individual interacting with a device at its home range center (g0) was 0.13 (SD = 0.08). Importantly, σ and g0 are intrinsically linked through a negative relationship, thus g0 should be derived from σ using a predictive model including individual variability. Simulations using this approach showed that bait stations deployed for about 500 days using a 25 m × 25 m grid consistently achieved eradication, and that a surveillance network of 3.25 chew cards ha−1 or 3.75 WaxTags ha−1 active for 14 nights would be required to confidently declare eradication. This density could be halved if the surveillance network was deployed for 28 nights or if the prior confidence in eradication was high (0.85). These recommendations take no account of differences in detection parameters between habitats. Therefore, if surveillance suggests that individuals are not encountering devices in certain habitats, device density should be adaptively revised. This approach applies to initiatives globally that aim to optimise eradication with limited funding.
Collapse
|
7
|
White TE, Latty T, Umbers KDL. The exploitation of sexual signals by predators: a meta-analysis. Proc Biol Sci 2022; 289:20220444. [PMID: 35642366 PMCID: PMC9156902 DOI: 10.1098/rspb.2022.0444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sexual signals are often central to reproduction, and their expression is thought to strike a balance between advertising to mates and avoiding detection by predatory eavesdroppers. Tests of the predicted predation costs have produced mixed results, however. Here we synthesized 187 effects from 78 experimental studies in a meta-analytic test of two questions; namely, whether predators, parasites and parasitoids express preferences for the sexual signals of prey, and whether sexual signals increase realized predation risk in the wild. We found that predators and parasitoids express strong and consistent preferences for signals in forced-choice contexts. We found a similarly strong overall increase in predation on sexual signallers in the wild, though here it was modality specific. Olfactory and acoustic signals increased the incidence of eavesdropping relative to visual signals, which experienced no greater risk than controls on average. Variation in outcome measures was universally high, suggesting that contexts in which sexual signalling may incur no cost, or even reduce the incidence of predation, are common. Our results reveal unexpected complexity in a central viability cost to sexual signalling, while also speaking to applied problems in invasion biology and pest management where signal exploitation holds promise for bio-inspired solutions.
Collapse
Affiliation(s)
- Thomas E. White
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2106, Australia
| | - Tanya Latty
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2106, Australia
| | - Kate D. L. Umbers
- School of Science, Western Sydney University, Sydney, New South Wales 2751, Australia,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia
| |
Collapse
|
8
|
Garvey PM, Glen AS, Clout MN, Nichols M, Pech RP. Niche partitioning in a guild of invasive mammalian predators. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2566. [PMID: 35138656 PMCID: PMC9285952 DOI: 10.1002/eap.2566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 05/28/2023]
Abstract
Predators compete aggressively for resources, establishing trophic hierarchies that influence ecosystem structure. Competitive interactions are particularly important in invaded ecosystems where introduced predators can suppress native prey species. We investigated whether niche partitioning exists within a guild of invasive mammalian predators and determined the consequences for native species. Over 4405 camera-trap days, we assessed interactions among three invasive predators: two apex predators (feral cats Felis catus and ferrets Mustela furo) and a mesopredator (stoats Mustela erminea), in relation to their primary prey (lagomorphs, rodents and birds) and habitat use. Further, we tested for mesopredator release by selectively removing cats and ferrets in a pulse perturbation experiment. We found compelling evidence of niche partitioning; spatiotemporal activity of apex predators maximized access to abundant invasive prey, with ferrets targeting lagomorphs and cats targeting rodents. Mesopredators adjusted their behavior to reduce the risk of interference competition, thereby restricting access to abundant prey but increasing predation pressure on diurnal native birds. Stoats were only recorded at the treatment site after both larger predators were removed, becoming the most frequently detected predator at 6 months post-perturbation. We suggest there is spatial and resource partitioning within the invasive predator guild, but that this is incomplete, and avoidance is achieved by temporal partitioning within overlapping areas. Niche partitioning among invasive predators facilitates coexistence, but simultaneously intensifies predation pressure on vulnerable native species.
Collapse
Affiliation(s)
| | | | - Mick N. Clout
- Centre for Biodiversity and Biosecurity, School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Margaret Nichols
- Centre for Wildlife Management and ConservationLincoln UniversityCanterburyNew Zealand
| | - Roger P. Pech
- Manaaki Whenua – Landcare ResearchLincolnNew Zealand
| |
Collapse
|
9
|
Lunn RB, Blackwell BF, DeVault TL, Fernández-Juricic E. Can we use antipredator behavior theory to predict wildlife responses to high-speed vehicles? PLoS One 2022; 17:e0267774. [PMID: 35551549 PMCID: PMC9098083 DOI: 10.1371/journal.pone.0267774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Animals seem to rely on antipredator behavior to avoid vehicle collisions. There is an extensive body of antipredator behavior theory that have been used to predict the distance/time animals should escape from predators. These models have also been used to guide empirical research on escape behavior from vehicles. However, little is known as to whether antipredator behavior models are appropriate to apply to an approaching high-speed vehicle scenario. We addressed this gap by (a) providing an overview of the main hypotheses and predictions of different antipredator behavior models via a literature review, (b) exploring whether these models can generate quantitative predictions on escape distance when parameterized with empirical data from the literature, and (c) evaluating their sensitivity to vehicle approach speed using a simulation approach wherein we assessed model performance based on changes in effect size with variations in the slope of the flight initiation distance (FID) vs. approach speed relationship. The slope of the FID vs. approach speed relationship was then related back to three different behavioral rules animals may rely on to avoid approaching threats: the spatial, temporal, or delayed margin of safety. We used literature on birds for goals (b) and (c). Our review considered the following eight models: the economic escape model, Blumstein's economic escape model, the optimal escape model, the perceptual limit hypothesis, the visual cue model, the flush early and avoid the rush (FEAR) hypothesis, the looming stimulus hypothesis, and the Bayesian model of escape behavior. We were able to generate quantitative predictions about escape distance with the last five models. However, we were only able to assess sensitivity to vehicle approach speed for the last three models. The FEAR hypothesis is most sensitive to high-speed vehicles when the species follows the spatial (FID remains constant as speed increases) and the temporal margin of safety (FID increases with an increase in speed) rules of escape. The looming stimulus effect hypothesis reached small to intermediate levels of sensitivity to high-speed vehicles when a species follows the delayed margin of safety (FID decreases with an increase in speed). The Bayesian optimal escape model reached intermediate levels of sensitivity to approach speed across all escape rules (spatial, temporal, delayed margins of safety) but only for larger (> 1 kg) species, but was not sensitive to speed for smaller species. Overall, no single antipredator behavior model could characterize all different types of escape responses relative to vehicle approach speed but some models showed some levels of sensitivity for certain rules of escape behavior. We derive some applied applications of our findings by suggesting the estimation of critical vehicle approach speeds for managing populations that are especially susceptible to road mortality. Overall, we recommend that new escape behavior models specifically tailored to high-speeds vehicles should be developed to better predict quantitatively the responses of animals to an increase in the frequency of cars, airplanes, drones, etc. they will face in the next decade.
Collapse
Affiliation(s)
- Ryan B. Lunn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Bradley F. Blackwell
- USDA, APHIS, Wildlife Services, National Wildlife Research Center, Sandusky, OH, United States of America
| | - Travis L. DeVault
- Savannah River Ecology Laboratory, University of Georgia, Jackson, SC, United States of America
| | | |
Collapse
|
10
|
Murphy EC, Sjoberg T, Agnew T, Sutherland M, Andrews G, Williams R, Williams J, Ross J, Clapperton BK. Body Odours as Lures for Stoats Mustela erminea: Captive and Field Trials. Animals (Basel) 2022; 12:ani12030394. [PMID: 35158715 PMCID: PMC8833509 DOI: 10.3390/ani12030394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The stoat (Mustela erminea) is invasive in New Zealand and has a serious impact on native biota. Trapping is the most common technique used to control stoats, but efforts to eradicate them or to improve control efficiency will require a range of different techniques. We examined the use of mustelid body odours as lures to attract stoats to traps or monitoring devices. Stoats were attracted to stoat urine, scats, and bedding, and to ferret (M. furo) bedding in captive and field trials. The use of odour lures may be particularly useful when the usual food-based lures are ineffective. Abstract Eradication and control methods to limit damage caused to native biota in New Zealand by the stoat (Mustela erminea) rely on effective lures for trapping and detection devices, such as cameras. Long-life semiochemical lures have the potential for targeting stoats in situations where food-based lures are of limited success. The attractiveness of body odours of captive stoats was tested in a series of captive animal and extensive field trials to investigate their potential as trapping and monitoring lures. Stoats approached and spent significantly more time sniffing stoat urine and scats and bedding from oestrous female stoats than a non-treatment control. The bedding odours were attractive in both the breeding and the non-breeding season. Stoats also spent significantly more time sniffing oestrous stoat bedding than female ferret bedding, but the ferret odour also produced a significant response by stoats. In the field trials, there were no significant differences between the number of stoats caught with food lures (long-life rabbit or hen eggs) compared with oestrous female or male stoat bedding lures. These results indicate the potential of both stoat bedding odour and the scent of another mustelid species as stoat trapping lures that likely act as a general odour attractant rather than a specific chemical signal of oestrus.
Collapse
Affiliation(s)
- Elaine C. Murphy
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
- Department of Conservation, Private Bag 4715, Christchurch 8140, New Zealand
- Correspondence:
| | - Tim Sjoberg
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
| | - Tom Agnew
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
| | - Madeline Sutherland
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
| | - Graeme Andrews
- Department of Conservation, P.O. Box 55, St Arnaud 7053, New Zealand;
| | - Raine Williams
- Independent researchers, P.O. Box 41, Coromandel 3543, New Zealand; (R.W.); (J.W.)
| | - Jeff Williams
- Independent researchers, P.O. Box 41, Coromandel 3543, New Zealand; (R.W.); (J.W.)
| | - James Ross
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
| | | |
Collapse
|
11
|
Ortiz-Jimenez CA, Michelangeli M, Pendleton E, Sih A, Smith JE. Behavioural correlations across multiple stages of the antipredator response: do animals that escape sooner hide longer? Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Assessing Two Different Aerial Toxin Treatments for the Management of Invasive Rats. Animals (Basel) 2022; 12:ani12030309. [PMID: 35158633 PMCID: PMC8833531 DOI: 10.3390/ani12030309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Aotearoa–New Zealand has embarked on an ambitious goal: to completely eradicate key invasive mammals by 2050. This will require novel tools capable of eliminating pests on a large scale. In New Zealand, large-scale pest suppression is typically carried out using aerial application of the toxin sodium fluoroacetate (1080). However, as currently applied, this tool does not remove all individuals. A novel application method, dubbed ‘1080-to-zero’, aims to change this and reduce the abundances of target pests to zero or near-zero. One such target is black rats (Rattus rattus), an invasive species challenging to control using ground-based methods. This study monitored and compared the response of black rats to a 1080-to-zero operation and a standard suppression 1080 operation. No difference in the efficacy of rat removal was found between the two treatments. The 1080-to-zero operation did not achieve its goal of rat elimination or reduction to near-zero levels, with an estimated 1540 rats surviving across the 2200 ha treatment area. However, 1080 operations can produce variable responses, and the results observed here differ from the only other reported 1080-to-zero operation. We encourage further research into this tool, including how factors such as ecosystem type, mast fruiting and operational timing influence success.
Collapse
|
13
|
Zub K, García-Díaz P, Sankey S, Eisler R, Lambin X. Using a Modeling Approach to Inform Progress Towards Stoat Eradication From the Orkney Islands. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2021.780102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive non-native species eradication attempts are typically large and expensive projects that benefit from the support of quantitative tools, such as population models, to be completed within the scheduled and funded time. Managed ecosystems are constantly changing due to population and ecosystem dynamics. Accordingly, any model predictions need to be updated, using different sources of data, to inform the project about the progress toward eradication. The stoat Mustela erminea was introduced to the hitherto predatory land mammal free Orkney archipelago around 2010. In 2016, a project aiming to eradicate stoats to preserve ecologically and economically important native wildlife was designed and implemented. It entailed a “knockdown” phase followed by a “mopping-up” phase to remove stoats that escaped capture. We used data from this project to iteratively predict the progress toward eradication. We applied spatially explicit individual-based models to estimate the proportion of stoats being exposed to capture, and then compared these simulation-based predictions with removal data, allowing us to estimate changes in the population size through time. We also used sighting data from members of the public to refine eradication probability. We were also able to demonstrate how the initially wide uncertainty gradually diminished as more evidence accumulated. The information derived from different types of data and quantitative models allowed us to track the effectiveness of current trapping approaches and to help to inform project managers about when the project achieved the knockdown phase milestone. Our analyses confirmed that the expected magnitude of the initial knockdown phase has been achieved in some areas, but also revealed spatial and temporal heterogeneity in the distribution of captures, most likely caused by the sequential trapping and stoat movement and trap shy stoats exposed to capture but not caught. This heterogeneity calls for additional data sources (e.g., from camera traps or detection dogs) to estimate the proportion of trap-shy individuals and the size of the untrapped population, and ultimately the feasibility of eradication.
Collapse
|
14
|
|
15
|
Kumar K, Pasachnik SA, Reid D, Harmer AMT. Spatial Ecology of Invasive Predatory Species Informs Predator Control Program for the Jamaican Rock Iguana (Cyclura collei). CARIBB J SCI 2021. [DOI: 10.18475/cjos.v51i2.a11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kirtana Kumar
- International Iguana Foundation, Fort Worth, Texas, U. S. A
| | | | - David Reid
- National Environment and Planning Agency, Kingston, Jamaica
| | - Aaron M. T. Harmer
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
16
|
Elk Responses to Management Hunting and Hazing. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Assessing the detectability of the Irish stoat Mustela erminea hibernica using two camera trap-based survey methods. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00598-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Ortiz-Jiménez L, Barja I. Surrounded by challenges: The simulated presence of competitors and predators modulates perianal secretion marking behaviour in the European mink (Mustela lutreola). Behav Processes 2021; 193:104508. [PMID: 34551363 DOI: 10.1016/j.beproc.2021.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Animals face a variety of daily challenges to their reproduction and survival that can detect in time through to the environment cues. By using an individual focal sampling, we evaluated the variations in the time devoted to the perianal secretion marking behaviour (PSMB) of European mink when they were exposed to the simulated presence of conspecifics and two potential predators. Model results indicated that males and adult individuals dedicated more time to PSMB than females and subadults. The presence of conspecifics increased PSMB time only in adult and males, probably as an intrasexual territorial competence response. The heightened decrease in PSMB time in presence of a dog suggests an innate response due to the detection of volatile substances from faeces of carnivorous. In addition, simulated conspecific presence increased PSMB in absence of odours (control) and with owl faeces. However, when facing dog faeces, the simulated conspecific presence had no effects on PSMB. Thus, minks seem to prioritize the imminent risk of predation to avoid being detected. The stimulation of PSMB in captivity by simulated cues from conspecifics and potential predators could be useful to facilitate the reintroduction of individuals into nature, as well as their adaptation and survival.
Collapse
Affiliation(s)
| | - Isabel Barja
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Biodiversity and Global Change Research Center (CIBC-UAM), Universidad Autónoma de Madrid, Spain
| |
Collapse
|
19
|
Herath APHM, Wat KKY, Banks PB, McArthur C. Animal personality drives individual dietary specialisation across multiple dimensions in a mammalian herbivore. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Katie K. Y. Wat
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Peter B. Banks
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Clare McArthur
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| |
Collapse
|
20
|
Bytheway JP, Johnstone KC, Price CJ, Banks PB. A mechanistic understanding of prebaiting to improve interaction with wildlife management devices. PEST MANAGEMENT SCIENCE 2021; 77:3107-3115. [PMID: 33638268 DOI: 10.1002/ps.6343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Prebaiting is a technique involving early deployment of 'unarmed' devices (e.g. baits and traps) to increase efficacy of wildlife management. Although commonly used, the mechanisms by which prebaiting works are poorly understood. We propose three mechanisms by which prebaiting may increase device interaction probabilities; (1) overcoming neophobia towards novel devices, (2) a 'trickle in' effect increasing time for animals to encounter devices; and (3) social information transfer about rewards associated with devices. We conducted a survey of 100 articles to understand how prebaiting has been used. We then tested our proposed prebaiting mechanisms using a global pest (black rats, Rattus rattus) examining how uniquely marked free-living rats responded to a common yet novel monitoring technique (tracking tunnels). RESULTS No studies in our dataset tested how prebaiting functioned. Most studies (61%) did not propose a mechanism for prebaiting, but overcoming neophobia was most commonly mentioned. We only found partial support for the overcoming neophobia hypothesis in our field test. We found the dominant mechanism operating in our system to be the 'trickle in' effect with the proportion of individuals visiting the device increasing over time. We found no support for social information transfer as a mechanism of prebaiting. CONCLUSION Applying a mechanistic understanding of how prebaiting functions will improve the efficacy of management devices. Our results suggest that prebaiting allows time for more rats to encounter a device, hence surveys in our system would benefit from long prebaiting periods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jenna P Bytheway
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Kyla C Johnstone
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Catherine J Price
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Wasson K, Tanner KE, Woofolk A, McCain S, Suraci JP. Top-down and sideways: Herbivory and cross-ecosystem connectivity shape restoration success at the salt marsh-upland ecotone. PLoS One 2021; 16:e0247374. [PMID: 33617558 PMCID: PMC7899356 DOI: 10.1371/journal.pone.0247374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Wetland restoration provides remarkable opportunities to understand vegetation dynamics and to inform success of future projects through rigorous restoration experiments. Salt marsh restoration typically focuses on physical factors such as sediment dynamics and elevation. Despite many demonstrations of strong top-down effects on salt marshes, the potential for consumers to affect salt marsh restoration projects has rarely been quantified. Recently, major restoration projects at the Elkhorn Slough National Estuarine Research Reserve in central California, USA provided an opportunity to examine how herbivory influences restoration success. We quantified the strength of consumer effects by comparing caged to uncaged plantings, and compared effects among plant species and sites. We used camera traps to detect which herbivores were most common and how their abundance varied spatially. Beyond characterizing consumer effects, we also tested management strategies for reducing negative effects of herbivory at the restoration sites, including caging, mowing, and acoustic playbacks of predator sounds. We found extremely strong consumer effects at sites with extensive stands of exotic forbs upland of the high marsh; uncaged restoration plants suffered heavy herbivory and high mortality, while most caged plants survived. Brush rabbits (Sylvilagus bachmani) were by far the most frequent consumers of these high marsh plants. Our work thus provides the first evidence of mammal consumers affecting salt marsh restoration success. Mowing of tall exotic forb cover adjacent to the marsh at one restoration site greatly reduced consumption, and nearly all monitored plantings survived at a second restoration site where construction had temporarily eliminated upland cover. Playbacks of predator sounds did not significantly affect restoration plantings, but restoration efforts in marsh communities vulnerable to terrestrial herbivory may benefit from concurrent restoration of predator communities in the upland habitats surrounding the marsh. A landscape approach is thus critical for recognizing linkages between terrestrial and marine vegetation.
Collapse
Affiliation(s)
- Kerstin Wasson
- Elkhorn Slough National Estuarine Research Reserve, Royal Oaks, California, United States of America
- Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
- * E-mail:
| | - Karen E. Tanner
- Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
| | - Andrea Woofolk
- Elkhorn Slough National Estuarine Research Reserve, Royal Oaks, California, United States of America
| | - Sean McCain
- California Department of Fish and Wildlife, Sacramento, California, United States of America
| | - Justin P. Suraci
- Environmental Studies, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
22
|
Johnstone KC, McArthur C, Banks PB. Catch me if you can: personality drives technique-specific biases during live-capture trapping. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextWildlife surveys often rely on a single live-capture technique to sample animal populations. Yet, animal personality (e.g. bold vs shy) can drive heterogeneity in capture probability, leading to biased sampling during live-capture trapping surveys.
Aims We tested whether a personality-related capture bias is similar between two live-capture techniques, or whether techniques with different capture mechanisms are biased towards certain spectrums of personality.
Methods We compared two live-capture techniques commonly used for surveying lizards, namely, noosing and pitfall traps. Techniques were deployed several days apart to survey populations of a desert-dwelling agamid, the military dragon, and we used outdoor open-field arenas to test for personality traits relating to boldness, activity and exploration.
Key results We found that noosing and pitfall traps sampled distinctly different spectrums of personality, with no individuals being captured by both techniques. Unexpectedly, noosing, which involved people approaching dragons to capture them, was biased towards shyer individuals that stayed close to shelter. In contrast, pitfall traps, which were generally set in open areas, were biased towards capturing individuals that moved further from shelter.
Conclusions We demonstrated that different live-capture techniques can be biased towards different spectrums of personality. We attribute the relationship between personality and technique to an interaction between the capture mechanisms of each technique and individual perceptions of risk and microhabitat use.
Implications To overcome biased and selective sampling and target individuals along a broad spectrum of personality, surveys should use complementary techniques that vary in their capture mechanisms.
Collapse
|