1
|
Sahın Demırel AN. Investigating the effect of climate factors on fig production efficiency with machine learning approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7885-7894. [PMID: 38817196 DOI: 10.1002/jsfa.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND This study employs a machine learning approach to investigate the impact of climate change on fig production in Turkey. The eXtreme Gradient Boosting (XGBoost) algorithm is used to analyze production performance and climate variable data from 1988 to 2023. Fig production is a significant component of Turkey's agricultural economy. Therefore, understanding how climate change affects fig production is essential for the development of sustainable agricultural practices. RESULTS Despite an observed increase in fig production between 2005 and 2020, potential yield may be negatively impacted by climate variables. Identifying the specific climatic factors affecting fig production efficiency remains a challenge. In the study, two different machine learning models are created: one for fig production yield per decare and another for fig production yield per bearing fig sapling. Eight climate variables (16 variables considering day and night values) serve as independent variables in the models. The models reveal that temperature change has the highest impact, with a percentage contribution of 41.30% in the first model and 43.90% in the second model. Thermal radiation (day and night) and 2 m temperature also significantly affect individually fig production. Wind speed, precipitation and humidity contribute to a lesser extent. CONCLUSION This study illuminates the intricate interrelationship between climate change and fig production in Turkey. The utilization of machine learning as a predictive tool for future production trends and an instrument for informing agricultural practices is a valuable contribution to the field. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ayca Nur Sahın Demırel
- Faculty of Agriculture, Department of Agricultural Economics, Iğdır University, Iğdır, Turkey
| |
Collapse
|
2
|
Hermans C, Litovska I, de Pastors M, Visser ME, Spoelstra K. Artificial light at night drives diel activity patterns of synanthropic pipistrelle bats and their prey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173699. [PMID: 38830420 DOI: 10.1016/j.scitotenv.2024.173699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The use of artificial light at night (ALAN) has increased drastically worldwide over the last decades. ALAN can have major effects on nocturnal communities, including insects and bats. Insects are attracted to street lights and few bat species take advantage of this by foraging on the attracted insects. ALAN potentially affects the temporal patterns of insect abundance and thereby bat foraging behaviour. In a natural dark environment, these patterns are usually bimodal, with an activity peak in the early evening and the morning. Little is known about how ALAN affects insect presence throughout the night, and whether the light spectrum plays a role. This is important, as these temporal changes may be a key driver of disturbances in bat-insect interactions. Here, we studied how white and red light affect insects' and bats' nightly activity patterns. The activity of insects and bats (Pipistrellus spp.) was recorded throughout the night at seven experimentally illuminated sites in a forest-edge ecosystem. ALAN disrupted activity patterns, with both insects and bats being more active throughout the night. ALAN facilitated all-night foraging in bats especially near white light, but these effects were attenuated near red light. The ability to forage throughout the night may be a key advantage causing synanthropic bats to dominate in illuminated environments, but this could also prove detrimental in the long term. As red light reduced disturbing effects of ALAN on insects and bats diel activity pattern, it opens the possibility of using spectral composition as a mitigation measure.
Collapse
Affiliation(s)
- Claire Hermans
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands.
| | - Iryna Litovska
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Wageningen University and Research, Wageningen, the Netherlands
| | - Mélyssa de Pastors
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| |
Collapse
|
3
|
Gaber H, Ruland F, Jeschke JM, Bernard‐Verdier M. Behavioural changes in the city: The common black garden ant defends aphids more aggressively in urban environments. Ecol Evol 2024; 14:e11639. [PMID: 38962026 PMCID: PMC11221068 DOI: 10.1002/ece3.11639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Urbanisation alters biodiversity patterns and threatens to disrupt mutualistic interactions. Aside from pollination, however, little is known about how mutualisms change in cities. Our study aimed to assess how urbanisation affects the protective mutualism between ants and aphids, investigating potential behavioural changes in mutualistic ants and their implications for aphids in urban environments. To do so, we studied the protective mutualism between the pink tansy aphid (Metopeurum fuscoviride) and the black garden ant (Lasius niger) along an urbanisation gradient in Berlin, Germany. In nine locations along this gradient, we measured aphid colony dynamics and proxies for parasitism, quantified the investment of ants in tending aphids and conducted behavioural assays to test the aggressiveness of ant responses to a simulated attack on the aphids. We found that aphid colonies flourished and were equally tended by ants across the urbanisation gradient, with a consistent positive density dependence between aphid and ant numbers. However, ants from more urbanised sites responded more aggressively to the simulated attack. Our findings suggest that this protective mutualism is not only maintained in the city, but that ants might even rely more on it and defend it more aggressively, as other food resources may become scarce and more unpredictable with urbanisation. We thereby provide unique insights into this type of mutualism in the city, further diversifying the growing body of work on mutualisms across urbanisation gradients.
Collapse
Affiliation(s)
- Hannah Gaber
- Department of BiologyGhent University (Ugent)GhentBelgium
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Florian Ruland
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- West Iceland Nature Research CentreStykkisholmurIceland
| | - Jonathan M. Jeschke
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Maud Bernard‐Verdier
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| |
Collapse
|
4
|
Beaugeard E, Brischoux F, Angelier F. Light pollution affects activity differentially across breeding stages in an urban exploiter: An experiment in the house sparrow (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124055. [PMID: 38692388 DOI: 10.1016/j.envpol.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Artificial Light At Night (ALAN) is a major urban perturbation, which can have detrimental effects on wildlife. Recent urban planning has led to an increased use of white light emission diodes (LEDs) in cities. However, little is known about the effects of this type of ALAN on wild vertebrates, especially during reproduction. We designed an experiment to test the impact of ALAN on the activity rhythms (daily time of first activity (TFA) and time of last activity (TLA)) of captive House sparrows (Passer domesticus) during several reproductive stages (from pre-breeding to post-breeding). We also tested the impact of ALAN on reproductive performance (laying date, clutch size, hatching and fledging success). Experimental birds were active earlier in the morning (earlier TFA) relative to controls although experimental and control birds did not differ in their TLA. The effect of ALAN on TFA was apparent during specific stages only (pre-breeding and chick-rearing stages), suggesting that sparrows actively adjust their activity in response to ALAN only during specific periods. This impact of ALAN on activity did not persist through the whole breeding season, suggesting that sparrows may habituate to ALAN. Alternatively, they may not be able to sustain a long-term increased activity in response to ALAN because of sleep deprivation and related physiological costs. Finally, we did not find any impact of ALAN on the reproductive performance of captive house sparrows held under optimal conditions. This suggests that ALAN may not be dramatically detrimental to the reproduction of this urban exploiter, at least when food availability is not constraining.
Collapse
Affiliation(s)
- Erika Beaugeard
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France.
| |
Collapse
|
5
|
Cox DTC, Gaston KJ. Cathemerality: a key temporal niche. Biol Rev Camb Philos Soc 2024; 99:329-347. [PMID: 37839797 DOI: 10.1111/brv.13024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Given the marked variation in abiotic and biotic conditions between day and night, many species specialise their physical activity to being diurnal or nocturnal, and it was long thought that these strategies were commonly fairly fixed and invariant. The term 'cathemeral', was coined in 1987, when Tattersall noted activity in a Madagascan primate during the hours of both daylight and darkness. Initially thought to be rare, cathemerality is now known to be a quite widespread form of time partitioning amongst arthropods, fish, birds, and mammals. Herein we provide a synthesis of present understanding of cathemeral behaviour, arguing that it should routinely be included alongside diurnal and nocturnal strategies in schemes that distinguish and categorise species across taxa according to temporal niche. This synthesis is particularly timely because (i) the study of animal activity patterns is being revolutionised by new and improved technologies; (ii) it is becoming apparent that cathemerality covers a diverse range of obligate to facultative forms, each with their own common sets of functional traits, geographic ranges and evolutionary history; (iii) daytime and nighttime activity likely plays an important but currently neglected role in temporal niche partitioning and ecosystem functioning; and (iv) cathemerality may have an important role in the ability of species to adapt to human-mediated pressures.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
6
|
Trigos-Peral G, Maák IE, Schmid S, Chudzik P, Czaczkes TJ, Witek M, Casacci LP, Sánchez-García D, Lőrincz Á, Kochanowski M, Heinze J. Urban abiotic stressors drive changes in the foraging activity and colony growth of the black garden ant Lasius niger. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170157. [PMID: 38242447 DOI: 10.1016/j.scitotenv.2024.170157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Changes in habitat characteristics are known to have profound effects on biotic communities and their functional traits. In the context of an urban-rural gradient, urbanisation drastically alters abiotic characteristics, e.g., by increasing environmental temperatures and through light pollution. These abiotic changes significantly impact the functional traits of organisms, particularly insects. Furthermore, changes in habitat characteristics also drive changes in the behavioural traits of animals, allowing them to adapt and thrive in new environments. In our study, we focused on the synanthropic ant species Lasius niger as a model organism. We conducted nocturnal field observations and complemented them with laboratory experiments to investigate the influence of night warming (NW) associated with Urban Heat Islands (UHI), light pollution (ALAN), and habitat type on ant foraging behaviour. In addition, we investigated the influence of elevated temperatures on brood development and worker mortality. Our findings revealed that urban populations of L. niger were generally more active during the night compared to their rural counterparts, although the magnitude of this difference varied with specific city characteristics. In laboratory settings, higher temperatures and continuous illumination were associated with increased activity level in ants, again differing between urban and rural populations. Rural ants exhibited more locomotion compared to their urban counterparts when maintained under identical conditions, which might enable them to forage more effectively in a potentially more challenging environment. High temperatures decreased the developmental time of brood from both habitat types and increased worker mortality, although rural colonies were more strongly affected. Overall, our study provides novel insights into the influence of urban environmental stressors on the foraging activity pattern and colony development of ants. Such stressors can be important for the establishment and spread of synanthropic ant species, including invasive ones, and the biotic homogenization of anthropogenic ecosystems.
Collapse
Affiliation(s)
- G Trigos-Peral
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland.
| | - I E Maák
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland; University of Szeged, Szeged, Hungary
| | - S Schmid
- University of Regensburg, Regensburg, Germany
| | - P Chudzik
- Han University of Applied Sciences, Nijmegen, Netherlands
| | | | - M Witek
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - L P Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Sánchez-García
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - Á Lőrincz
- University of Szeged, Szeged, Hungary
| | | | - J Heinze
- University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Cox DTC, Gaston KJ. Ecosystem functioning across the diel cycle in the Anthropocene. Trends Ecol Evol 2024; 39:31-40. [PMID: 37723017 DOI: 10.1016/j.tree.2023.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Given the marked differences in environmental conditions and active biota between daytime and nighttime, it is almost inevitable that ecosystem functioning will also differ. However, understanding of these differences has been hampered due to the challenges of conducting research at night. At the same time, many anthropogenic pressures are most forcefully exerted or have greatest effect during either daytime (e.g., high temperatures, disturbance) or nighttime (e.g., artificial lighting, nights warming faster than days). Here, we explore current understanding of diel (daily) variation in five key ecosystem functions and when during the diel cycle they primarily occur [predation (unclear), herbivory (nighttime), pollination (daytime), seed dispersal (unclear), carbon assimilation (daytime)] and how diel asymmetry in anthropogenic pressures impacts these functions.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK.
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|
8
|
Cox DTC, Gaston KJ. Global erosion of terrestrial environmental space by artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166701. [PMID: 37652384 DOI: 10.1016/j.scitotenv.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Artificial light at night (ALAN) disrupts natural light cycles, with biological impacts that span from behaviour of individual organisms to ecosystem functions, and across bacteria, fungi, plants and animals. Global consequences have almost invariably been inferred from the geographic distribution of ALAN. How ALAN is distributed in environmental space, and the extent to which combinations of environmental conditions with natural light cycles have been lost, is also key. Globally (between 60°N and 56°S), we ordinated four bioclimatic variables at 1.61 * 1.21 km resolution to map the position and density of terrestrial pixels within nighttime environmental space. We then used the Black Marble Nighttime Lights product to determine where direct ALAN emissions were present in environmental space in 2012 and how these had expanded in environmental space by 2022. Finally, we used the World Atlas of Artificial Sky Brightness to determine the proportion of environmental space that is unaffected by ALAN across its spatial distribution. We found that by 2012 direct ALAN emissions occurred across 71.9 % of possible nighttime terrestrial environmental conditions, with temperate nighttime environments and highly modified habitats disproportionately impacted. From 2012 to 2022 direct ALAN emissions primarily grew within 34.4 % of environmental space where it was already present, with this growth concentrated in tropical environments. Additionally considering skyglow, just 13.2 % of environmental space now only experiences natural light cycles throughout its distribution. With opportunities to maintain much of environmental space under such cycles fast disappearing, the removal, reduction and amelioration of ALAN from areas of environmental space in which it is already widespread is critical.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
9
|
Poulin R. Light pollution may alter host-parasite interactions in aquatic ecosystems. Trends Parasitol 2023; 39:1050-1059. [PMID: 37722935 DOI: 10.1016/j.pt.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
With growing human populations living along freshwater shores and marine coastlines, aquatic ecosystems are experiencing rising levels of light pollution. Through its effects on hosts and parasites, anthropogenic light at night can disrupt host-parasite interactions evolved under a normal photoperiod. Yet its impact on aquatic parasites has been ignored to date. Here, I discuss the direct effects of light on the physiology and behaviour of parasite infective stages and their hosts. I argue that night-time lights can change the spatiotemporal dynamics of infection risk and drive the rapid evolution of parasites. I then highlight knowledge gaps and how impacts on parasitic diseases should be incorporated into the design of measures aimed at mitigating the impact of anthropogenic light on wildlife.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.
| |
Collapse
|