1
|
Liu L, Huang Y, Zhang K, Song S, Li S, Li Y, Lan Y. Hepatitis B core antigen regulates dendritic cell proliferation and apoptosis through regulation of PKC/NF‑κB signaling pathway. Mol Med Rep 2018; 18:5726-5732. [PMID: 30365118 DOI: 10.3892/mmr.2018.9604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/19/2018] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B core antigen (HBcAg) possesses unusual immunologic features. However, the biological roles and mechanisms of HBcAg in dendritic cell proliferation and apoptosis remain to be elucidated. In the present study, DC2.4 cells were treated with different concentrations of HBcAg (10, 20 and 30 µg/ml). MTT assay and flow cytometry (Annexin V/propidium iodide analysis) were performed to investigate changes in cell proliferation and apoptosis. Western blot analysis was conducted to examine the changes in nuclear factor (NF)‑κB and protein kinase C (PKC) signaling pathways. NF‑κB inhibitor pyrrolidine dithiocarbamate (PDTC) and PKC inhibitor Chelerythrine were used to block these two signaling pathways. It was identified that HBcAg increased proliferation and decreased apoptosis in a dose‑dependent manner. Western blotting results demonstrated that HBcAg upregulated p‑PKC, p‑IκB, p‑P65, tumor necrosis factor‑α and B‑cell lymphoma 2 (Bcl‑2) levels, and downregulated cleaved caspase 3, demonstrating that HBcAg activated the PKC and NF‑κB signaling pathways. NF‑κB inhibitor PDTC reduced the effects of HBcAg on DC2.4 proliferation (0.6 fold vs. 0.25 fold) and apoptosis (0.43 fold vs. 0.17 fold), and on Bcl‑2 expression levels. PKC inhibitor Chelerythrine reduced the biological effects of HBcAg; it reduced proliferation (0.67 fold vs. 0.23 fold) and upregulated apoptosis (0.43 fold vs. 0.13 fold). Chelerythrine also blocked NF‑κB activity and the HBcAg‑induced Bcl‑2 increase, suggesting the effect on Bcl‑2 from HBcAg was dependent on the PKC/NF‑κB signaling pathway. In conclusion, HBcAg promoted proliferation and inhibited apoptosis through the PKC/NF‑κB/Bcl‑2 signaling pathway in DC2.4 cells.
Collapse
Affiliation(s)
- Lan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanxin Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kaili Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shupeng Song
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuangxing Li
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yongguo Li
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yinghua Lan
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
2
|
Zhou J, Xi C, Wang W, Yang Y, Qiu Y, Huang Z. Autophagy plays an important role in triptolide-induced apoptosis in cardiomyocytes. Toxicol Lett 2015; 236:168-83. [PMID: 26007683 DOI: 10.1016/j.toxlet.2015.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/07/2015] [Accepted: 05/17/2015] [Indexed: 01/12/2023]
Abstract
Triptolide (TP), a major bioactive component isolated from the traditional Chinese herb Tripterygium wilfordii Hook f. (TWHF), has been shown to exert various pharmacological effects. However, the severe toxicity of TP prevents wide clinical use. In a previous study, we reported that TP-induced mitochondria-dependent apoptosis in cardiomyocytes is mediated by reactive oxygen species (ROS). Autophagy is a cellular self-digestion process and is one of the first lines of defense against oxidative stress. Additionally, recent evidence suggests that autophagy can selectively eliminate damaged mitochondria. This study investigated the role of autophagy in TP-induced cardiotoxicity. We investigated the effects of autophagy in combination with TP on apoptosis, ROS and mitochondrial function. Rat cardiomyocytes were pre-treated with chloroquine or rapamycin followed by TP. The augmentation of autophagy with rapamycin in the presence of TP substantially ameliorated the detrimental effects induced by TP, while suppression of autophagy by chloroquine accelerates TP-induced cellular damage. In addition, pre-treated with rapamycin before TP administration also attenuated TP-induced damage in Balb/c mice heart tissues. Taken together, these results suggest that TP-induced cell death can be modified by autophagy. Furthermore, induction of autophagy by rapamycin may be a potential cardioprotective role against TP-induced cardiotoxicity by facilitating removal of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chen Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yanqin Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuwen Qiu
- Center of Laboratory Animals, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Center of Laboratory Animals, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases. Autoimmun Rev 2015; 14:127-39. [DOI: 10.1016/j.autrev.2014.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
|
4
|
Nath PR, Isakov N. Insights into peptidyl-prolyl cis–trans isomerase structure and function in immunocytes. Immunol Lett 2015; 163:120-31. [DOI: 10.1016/j.imlet.2014.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
|
5
|
Mackern-Oberti JP, Vega F, Llanos C, Bueno SM, Kalergis AM. Targeting dendritic cell function during systemic autoimmunity to restore tolerance. Int J Mol Sci 2014; 15:16381-417. [PMID: 25229821 PMCID: PMC4200801 DOI: 10.3390/ijms150916381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022] Open
Abstract
Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders.
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago 8330025, Chile.
| | - Fabián Vega
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 350, Santiago 8330033, Chile.
| | - Carolina Llanos
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 350, Santiago 8330033, Chile.
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago 8330025, Chile.
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago 8330025, Chile.
| |
Collapse
|
6
|
Yong K, Nguyen HD, Hii L, Chan DT, Boudville N, Messineo A, Lim EM, Dogra GK, Lim WH. Association of a change in immunosuppressive regimen with hemodynamic and inflammatory markers of cardiovascular disease after kidney transplantation. Am J Hypertens 2013; 26:843-9. [PMID: 23443728 DOI: 10.1093/ajh/hpt017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although rejection rates and short-term graft survival have significantly improved in kidney transplantation with the introduction of calcineurin inhibitor (CNI), cardiovascular disease (CVD) and metabolic complications are being increasingly recognized as important causes of morbidity and mortality. We hypothesize that non-CNI proliferation signal inhibitor (PSI)-based immunosuppressive regimen is associated with improved arterial stiffness after kidney transplantation compared with CNI-based immunosuppressive regimens. METHODS This is a prospective, single-center study of renal transplant (RT) recipients comparing the metabolic, cardiovascular (pulse wave velocity and aortic augmentation index (AI) adjusted for heart rate (AI × 75)), inflammatory cytokines (interleukins (ILs) 6, 12, and 18) and graft-related outcomes at 3 and 15 months posttransplantation between RT recipients maintained on CNI- (CNI-CNI) or PSI-based (CNI-PSI) regimens including sirolimus and everolimus. RESULTS Fifty and 17 RT recipients maintained on CNI-CNI and CNI-PSI, respectively, were included in this study. Median time to PSI conversion from CNI was 5 months. Compared with CNI-CNI recipients, CNI-PSI recipients had significantly lower fasting blood glucose in nondiabetics (coefficient = -16.2; 95% confidence interval (CI) = -14.4 to -18.0; P < 0.01), lower IL-18 levels (coefficient = -229.16; 95% CI = -343.94 to -114.38; P < 0.01), and lower AI × 75 (coefficient = -5.14; 95% CI = -9.99 to -0.28; P = 0.04) at 15 months posttransplant in the multivariable models. CONCLUSIONS Our study suggests from the elimination of CNI for PSI may lower AIx75 and IL-18, both surrogate markers of CVD, but adequately powered, randomized, controlled studies are required to establish the causal relationship between immunosuppressive agents and CVD risk.
Collapse
Affiliation(s)
- Kenneth Yong
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The cyclophilin-binding agent Sanglifehrin A is a dendritic cell chemokine and migration inhibitor. PLoS One 2011; 6:e18406. [PMID: 21483789 PMCID: PMC3069092 DOI: 10.1371/journal.pone.0018406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 03/07/2011] [Indexed: 01/10/2023] Open
Abstract
Sanglifehrin A (SFA) is a cyclophilin-binding immunosuppressant but the immunobiology of action is poorly understood. We and others have reported that SFA inhibits IL-12 production and antigen uptake in dendritic cells (DC) and exhibits lower activity against lymphocytes. Here we show that SFA suppresses DC chemokine production and migration. Gene expression analysis and subsequent protein level confirmation revealed that SFA suppressed CCL5, CCL17, CCL19, CXCL9 and CXCL10 expression in human monocyte-derived DC (moDC). A systems biology analysis, Onto Express, confirmed that SFA interferes with chemokine-chemokine receptor gene expression with the highest impact. Direct comparison with the related agent cyclosporine A (CsA) and dexamethasone indicated that SFA uniquely suppresses moDC chemokine expression. Competitive experiments with a 100-fold molar excess of CsA and with N-Methyl-Val-4-cyclosporin, representing a nonimmunosuppressive derivative of CsA indicated chemokine suppression through a cyclophilin-A independent pathway. Functional assays confirmed reduced migration of CD4+ Tcells and moDCs to supernatant of SFA-exposed moDCs. Vice versa, SFA-exposed moDC exhibited reduced migration against CCL19. Moreover, SFA suppressed expression of the ectoenzyme CD38 that was reported to regulate DC migration and cytokine production. These results identify SFA as a DC chemokine and migration inhibitor and provide novel insight into the immunobiology of SFA.
Collapse
|
8
|
McMahon G, Weir MR, Li XC, Mandelbrot DA. The evolving role of mTOR inhibition in transplantation tolerance. J Am Soc Nephrol 2011; 22:408-15. [PMID: 21355051 DOI: 10.1681/asn.2010040351] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) plays a key role in the immune response. mTOR inhibitors suppress T cell activation and proliferation and are effective immunosuppressants. Today there is growing interest in their potential role in inducing tolerance after transplantation. mTOR inhibitors induce anergy in naïve T cells, promote the expansion of regulatory T cells, and inhibit the maturation of dendritic cells, thus promoting immunologic tolerance. Here we review the mechanisms by which mTOR inhibitors promote tolerance. We discuss the clinical relevance of these mechanisms and suggest how they might be used in the design of future protocols to induce tolerance.
Collapse
Affiliation(s)
- Gearoid McMahon
- Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
The ultimate outcome of T cell receptor recognition is determined by the context in which the antigen is encountered. In this fashion both antigen-presenting cells and T cells must integrate multiple environmental cues in the form of pathogen-associated molecular patterns, cytokines and accessory molecule signals. The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a central role in integrating environmental signals critical to regulating metabolism and cell survival. In this paper we review the data demonstrating that mTOR integrates signals from the immune microenvironment and therefore facilitates the generation of the adaptive immune response. Specifically, we review the role of mTOR in promoting dendritic cell activation and maturation, in regulating full T cell activation versus anergy, and influencing the induction of regulatory T cells.
Collapse
Affiliation(s)
- Greg M Delgoffe
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
10
|
Mendes SDS, Candi A, Vansteenbrugge M, Pignon MR, Bult H, Boudjeltia KZ, Munaut C, Raes M. Microarray analyses of the effects of NF-kappaB or PI3K pathway inhibitors on the LPS-induced gene expression profile in RAW264.7 cells: synergistic effects of rapamycin on LPS-induced MMP9-overexpression. Cell Signal 2009; 21:1109-22. [PMID: 19285553 DOI: 10.1016/j.cellsig.2009.02.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 12/25/2022]
Abstract
Lipopolysaccharide (LPS) activates a broad range of signalling pathways including mainly NF-kappaB and the MAPK cascade, but recent evidence suggests that LPS stimulation also activates the PI3K pathway. To unravel the specific roles of both pathways in LPS signalling and gene expression profiling, we investigated the effects of different inhibitors of NF-kappaB (BAY 11-7082), PI3K (wortmannin and LY294002) but also of mTOR (rapamycin), a kinase acting downstream of PI3K/Akt, in LPS-stimulated RAW264.7 macrophages, analyzing their effects on the LPS-induced gene expression profile using a low density DNA microarray designed to monitor the expression of pro-inflammatory genes. After statistical and hierarchical cluster analyses, we determined five clusters of genes differentially affected by the four inhibitors used. In the fifth cluster corresponding to genes upregulated by LPS and mainly affected by BAY 11-7082, the gene encoding MMP9 displayed a particular expression profile, since rapamycin drastically enhanced the LPS-induced upregulation at both the mRNA and protein levels. Rapamycin also enhanced the LPS-induced NF-kappaB transactivation as determined by a reporter assay, phosphorylation of the p38 and Erk1/2 MAPKs, and counteracted PPAR activity. These results suggest that mTOR could negatively regulate the effects of LPS on the NF-kappaB and MAPK pathways. We also performed real-time RT-PCR assays on mmp9 expression using rosiglitazone (agonist of PPARgamma), PD98059 (inhibitor of Erk 1/2) and SB203580 (inhibitor of p38(MAPK)), that were able to counteract the rapamycin mediated overexpression of mmp9 in response to LPS. Our results suggest a new pathway involving mTOR for regulating specifically mmp9 in LPS-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Sofia Dos Santos Mendes
- University of Namur-FUNDP, Research Unit in Cellular Biology, Rue de Bruxelles 61, Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|