1
|
Deng H, Zhang A, Pang DRR, Xi Y, Yang Z, Matheson R, Li G, Luo H, Lee KM, Fu Q, Zou Z, Chen T, Wang Z, Rosales IA, Peters CW, Yang J, Coronel MM, Yolcu ES, Shirwan H, García AJ, Markmann JF, Lei J. Bioengineered omental transplant site promotes pancreatic islet allografts survival in non-human primates. Cell Rep Med 2023; 4:100959. [PMID: 36863336 PMCID: PMC10040375 DOI: 10.1016/j.xcrm.2023.100959] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/04/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023]
Abstract
The transplanting islets to the liver approach suffers from an immediate posttransplant loss of islets of more than 50%, progressive graft dysfunction over time, and precludes recovery of grafts should there be serious complications such as the development of teratomas with grafts that are stem cell-derived islets (SC-islets). The omentum features an attractive extrahepatic alternative site for clinical islet transplantation. We explore an approach in which allogeneic islets are transplanted onto the omentum, which is bioengineered with a plasma-thrombin biodegradable matrix in three diabetic non-human primates (NHPs). Within 1 week posttransplant, each transplanted NHP achieves normoglycemia and insulin independence and remains stable until termination of the experiment. Success was achieved in each case with islets recovered from a single NHP donor. Histology demonstrates robust revascularization and reinnervation of the graft. This preclinical study can inform the development of strategies for β cell replacement including the use of SC-islets or other types of novel cells in clinical settings.
Collapse
Affiliation(s)
- Hongping Deng
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexander Zhang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dillon Ren Rong Pang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yinsheng Xi
- School of Clinical Medicine, Southern Medical University, Foshan 528300, China
| | - Zhihong Yang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rudy Matheson
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hao Luo
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kang M Lee
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qiang Fu
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhongliang Zou
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tao Chen
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhenjuan Wang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ivy A Rosales
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cole W Peters
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jibing Yang
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - María M Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Esma S Yolcu
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Haval Shirwan
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - James F Markmann
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Gong W, Liu B, Chen J, Liu C, Shen Z. Impact of Regulatory T Cells on Innate Immune Cells in a Pre-Sensitized Heart Transplant Model. Ann Transplant 2018. [PMID: 29650945 PMCID: PMC6248278 DOI: 10.12659/aot.907598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Although our previous studies revealed the role of Tregs (regulatory T cells) and MDSCs (myeloid-derived suppressor cells) in a pre-sensitized cardiac transplant model, interplay between Tregs and NK cells, neutrophils, and macrophages remain undefined. Material/Methods Mice heart transplantation with skin pre-sensitization was performed, in which prolonged-cold ischemia time (PCI) was used for donor treatment. Syngeneic heterotopic heart transplant recipients with PCI were treated with PC61 (monoclonal anti-CD25 antibodies), adoptive cell transfer with Tregs, and rapamycin. Results We unveiled that both rapamycin treatment and adoptive transfer of Tregs could lead to a remarkable decrease of frequency of splenic Gr1+ cells (P=0.058 and P=0.016, respectively). Although administration of PC61 did not affect frequency of splenic Gr1+ cells, it dramatically increased frequency of splenic F4/80+ macrophages (P=0.052). Intriguingly, use of both exogenous PC61 and rapamycin induced a dramatic augmentation of frequency of Gr-1+ neutrophils in the grafts (PC61: P=0.00029; rapamycin: P=0.0096). Noticeably, all different regimens including PC61, rapamycin, and adoptive transfer of Tregs, consistently resulted in a remarked augmentation of frequency of F4/80+ macrophages within grafts (PC61, P=0.0013; rapamycin, P=0.015; Tregs transfer, P=0.013). Although rapamycin and adoptive transfer of Tregs did not affect frequency of NK1.1+ cells, administration of PC61 dramatically increased frequency of NK1.1+ cells within grafts (P=0.033). Conclusions Tregs depletion or Tregs induced by rapamycin or exogenous cell transfer could affect frequencies of both splenic and intragraft neutrophils, macrophages, and NK cells, but not splenic NK cells. Our data might shed light on understanding sensitized transplant biology.
Collapse
Affiliation(s)
- Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland).,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Baoqing Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Juntao Chen
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chen Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Zhonghua Shen
- Department of Cardiac Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
3
|
Wang S, Tasch J, Kheradmand T, Ulaszek J, Ely S, Zhang X, Hering BJ, Miller SD, Luo X. Transient B-cell depletion combined with apoptotic donor splenocytes induces xeno-specific T- and B-cell tolerance to islet xenografts. Diabetes 2013; 62:3143-50. [PMID: 23852699 PMCID: PMC3749362 DOI: 10.2337/db12-1678] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peritransplant infusion of apoptotic donor splenocytes cross-linked with ethylene carbodiimide (ECDI-SPs) has been demonstrated to effectively induce allogeneic donor-specific tolerance. The objective of the current study is to determine the effectiveness and additional requirements for tolerance induction for xenogeneic islet transplantation using donor ECDI-SPs. In a rat-to-mouse xenogeneic islet transplant model, we show that rat ECDI-SPs alone significantly prolonged islet xenograft survival but failed to induce tolerance. In contrast to allogeneic donor ECDI-SPs, xenogeneic donor ECDI-SPs induced production of xenodonor-specific antibodies partially responsible for the eventual islet xenograft rejection. Consequently, depletion of B cells prior to infusions of rat ECDI-SPs effectively prevented such antibody production and led to the indefinite survival of rat islet xenografts. In addition to controlling antibody responses, transient B-cell depletion combined with ECDI-SPs synergistically suppressed xenodonor-specific T-cell priming as well as memory T-cell generation. Reciprocally, after initial depletion, the recovered B cells in long-term tolerized mice exhibited xenodonor-specific hyporesponsiveness. We conclude that transient B-cell depletion combined with donor ECDI-SPs is a robust strategy for induction of xenodonor-specific T- and B-cell tolerance. This combinatorial therapy may be a promising strategy for tolerance induction for clinical xenogeneic islet transplantation.
Collapse
Affiliation(s)
- Shusen Wang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People's Republic of China
| | - James Tasch
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Taba Kheradmand
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Jodie Ulaszek
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Sora Ely
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
| | - Xiaomin Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Stephen D. Miller
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xunrong Luo
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois the
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Corresponding author: Xunrong Luo,
| |
Collapse
|
4
|
Carvello M, Petrelli A, Vergani A, Lee KM, Tezza S, Chin M, Orsenigo E, Staudacher C, Secchi A, Dunussi-Joannopoulos K, Sayegh MH, Markmann JF, Fiorina P. Inotuzumab ozogamicin murine analog-mediated B-cell depletion reduces anti-islet allo- and autoimmune responses. Diabetes 2012; 61:155-65. [PMID: 22076927 PMCID: PMC3237644 DOI: 10.2337/db11-0684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
B cells participate in the priming of the allo- and autoimmune responses, and their depletion can thus be advantageous for islet transplantation. Herein, we provide an extensive study of the effect of B-cell depletion in murine models of islet transplantation. Islet transplantation was performed in hyperglycemic B-cell-deficient(μMT) mice, in a purely alloimmune setting (BALB/c into hyperglycemic C57BL/6), in a purely autoimmune setting (NOD.SCID into hyperglycemic NOD), and in a mixed allo-/autoimmune setting (BALB/c into hyperglycemic NOD). Inotuzumab ozogamicin murine analog (anti-CD22 monoclonal antibody conjugated with calicheamicin [anti-CD22/cal]) efficiently depleted B cells in all three models of islet transplantation examined. Islet graft survival was significantly prolonged in B-cell-depleted mice compared with control groups in transplants of islets from BALB/c into C57BL/6 (mean survival time [MST]: 16.5 vs. 12.0 days; P = 0.004), from NOD.SCID into NOD (MST: 23.5 vs. 14.0 days; P = 0.03), and from BALB/c into NOD (MST: 12.0 vs. 5.5 days; P = 0.003). In the BALB/c into B-cell-deficient mice model, islet survival was prolonged as well (MST: μMT = 32.5 vs. WT = 14 days; P = 0.002). Pathology revealed reduced CD3(+) cell islet infiltration and confirmed the absence of B cells in treated mice. Mechanistically, effector T cells were reduced in number, concomitant with a peripheral Th2 profile skewing and ex vivo recipient hyporesponsiveness toward donor-derived antigen as well as islet autoantigens. Finally, an anti-CD22/cal and CTLA4-Ig-based combination therapy displayed remarkable prolongation of graft survival in the stringent model of islet transplantation (BALB/c into NOD). Anti-CD22/cal-mediated B-cell depletion promotes the reduction of the anti-islet immune response in various models of islet transplantation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antibody-Dependent Cell Cytotoxicity/physiology
- Autoimmunity/drug effects
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Cell Death/drug effects
- Cell Death/immunology
- Cells, Cultured
- Female
- Graft Survival/immunology
- Inotuzumab Ozogamicin
- Islets of Langerhans/drug effects
- Islets of Langerhans/immunology
- Islets of Langerhans Transplantation/immunology
- Islets of Langerhans Transplantation/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Transplantation Tolerance/drug effects
- Transplantation Tolerance/immunology
Collapse
Affiliation(s)
- Michele Carvello
- Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Petrelli
- Nephrology Division, Transplantation Research Center, Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Vergani
- Nephrology Division, Transplantation Research Center, Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kang Mi Lee
- Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sara Tezza
- Nephrology Division, Transplantation Research Center, Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Melissa Chin
- Nephrology Division, Transplantation Research Center, Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elena Orsenigo
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Staudacher
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Secchi
- Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | | - Mohamed H. Sayegh
- Nephrology Division, Transplantation Research Center, Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - James F. Markmann
- Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paolo Fiorina
- Nephrology Division, Transplantation Research Center, Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
- Corresponding author: Paolo Fiorina,
| |
Collapse
|