1
|
Chen T, Wu S, Feng L, Long S, Liu Y, Zhang C, Lu W, Shen Y, Jiang S, Chen W, Hong G, Zhou L, Wang F, Luo Y, Zou H. The association between activation of the ERK1/2-NF-κB signaling pathway by TIMP2 expression and chronic renal allograft dysfunction in the CRAD rat model. Transpl Immunol 2024; 82:101984. [PMID: 38184210 DOI: 10.1016/j.trim.2023.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE The tissue inhibitor of metalloproteinase 2 (TIMP2), a natural inhibitor of matrix metalloproteinase (MMP), regulates inflammation, fibrosis, and cell proliferation. Chronic renal allograft dysfunction (CRAD) is a primary factor affecting the long-term survival of renal allografts. We assessed whether up-regulation of TIMP2 expression may affect the ERK1/2-NF-κB signaling pathway and CRAD development. METHODS Lewis rats received orthotopic F344 kidney allografts to establish the classical CRAD model. The treatment group was injected with a lentivirus encoding a TIMP2-targeting small hairpin (sh)RNA (LTS) at 5 × 108 TU/ml monthly after kidney transplantation. A second CRAD group was injected with a lentivirus TIMP2-control vector (LTC). After 12 weeks, blood, urine, and kidney tissue were harvested to evaluate renal function and pathological examinations. Hematoxylin and eosin staining, Masson staining, and Periodic acid-Schiff staining were performed for renal histopathological evaluation according to the Banff criteria. TIMP2, phospho (p)-ERK1/2, p-p65 (NF-κB) expression levels were measured via immunohistochemical and Western blot analyses. RESULTS Compared to the F344 and Lewis control groups, the expression of TIMP2, p-ERK1/2, and p-p65 were significantly higher in the CRAD and CRAD+LTC renal tissues (p < 0.05). There were also increased levels of serum creatinine, nitrogen, and 24 h urinary protein in these two groups (p < 0.05). Typical histopathological changes of CRAD were observed in the CRAD and CRAD+LTC groups. Administration of LTS effectively decreased the expression of TIMP2, p-ERK1/2, and p-P65, and reduced interstitial fibrosis and macrophage infiltration in the treatment group (p < 0.05). Additionally, MCP1 and ICAM-1, which are downstream cytokines of the NF-κB pathway, were also inhibited in the renal rat kidney from the LTS group (p < 0.05). Furthermore, renal function was well preserved in the LTS group compared to the CRAD group and CRAD+LTC group. CONCLUSION A decrease of TIMP2 can alleviate the progression of inflammation in CRAD via inhibition of the ERK1/2-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tong Chen
- South China Hospital of Shenzhen University, Shenzhen 518116, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shiquan Wu
- South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Ling Feng
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Siyu Long
- South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Yu Liu
- South China Hospital of Shenzhen University, Shenzhen 518116, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Caibin Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Wenqian Lu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Yuli Shen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Shanshan Jiang
- South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Wenya Chen
- South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Guoai Hong
- South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Li Zhou
- South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Fang Wang
- South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Yuechan Luo
- South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Hequn Zou
- South China Hospital of Shenzhen University, Shenzhen 518116, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
2
|
Lan T, Bi F, Xu Y, Yin X, Chen J, Han X, Guo W. PPAR-γ activation promotes xenogenic bioroot regeneration by attenuating the xenograft induced-oxidative stress. Int J Oral Sci 2023; 15:10. [PMID: 36797252 PMCID: PMC9935639 DOI: 10.1038/s41368-023-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
Xenogenic organ transplantation has been considered the most promising strategy in providing possible substitutes with the physiological function of the failing organs as well as solving the problem of insufficient donor sources. However, the xenograft, suffered from immune rejection and ischemia-reperfusion injury (IRI), causes massive reactive oxygen species (ROS) expression and the subsequent cell apoptosis, leading to the xenograft failure. Our previous study found a positive role of PPAR-γ in anti-inflammation through its immunomodulation effects, which inspires us to apply PPAR-γ agonist rosiglitazone (RSG) to address survival issue of xenograft with the potential to eliminate the excessive ROS. In this study, xenogenic bioroot was constructed by wrapping the dental follicle cells (DFC) with porcine extracellular matrix (pECM). The hydrogen peroxide (H2O2)-induced DFC was pretreated with RSG to observe its protection on the damaged biological function. Immunoflourescence staining and transmission electron microscope were used to detect the intracellular ROS level. SD rat orthotopic transplantation model and superoxide dismutase 1 (SOD1) knockout mice subcutaneous transplantation model were applied to explore the regenerative outcome of the xenograft. It showed that RSG pretreatment significantly reduced the adverse effects of H2O2 on DFC with decreased intracellular ROS expression and alleviated mitochondrial damage. In vivo results confirmed RSG administration substantially enhanced the host's antioxidant capacity with reduced osteoclasts formation and increased periodontal ligament-like tissue regeneration efficiency, maximumly maintaining the xenograft function. We considered that RSG preconditioning could preserve the biological properties of the transplanted stem cells under oxidative stress (OS) microenvironment and promote organ regeneration by attenuating the inflammatory reaction and OS injury.
Collapse
Affiliation(s)
- Tingting Lan
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, China
| | - Fei Bi
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuchan Xu
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoli Yin
- grid.216938.70000 0000 9878 7032Department of Pediatric Dentistry, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China ,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Jie Chen
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xue Han
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China. .,Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
4
|
Gao J, Gu Z. The Role of Peroxisome Proliferator-Activated Receptors in Kidney Diseases. Front Pharmacol 2022; 13:832732. [PMID: 35308207 PMCID: PMC8931476 DOI: 10.3389/fphar.2022.832732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Accumulating evidence suggests that PPARs may play an important role in the pathogenesis of kidney disease. All three members of the PPAR subfamily, PPARα, PPARβ/δ, and PPARγ, have been implicated in many renal pathophysiological conditions, including acute kidney injury, diabetic nephropathy, and chronic kidney disease, among others. Emerging data suggest that PPARs may be potential therapeutic targets for renal disease. This article reviews the physiological roles of PPARs in the kidney and discusses the therapeutic utility of PPAR agonists in the treatment of kidney disease.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Zhaoyan Gu
- Department of Endocrinology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaoyan Gu,
| |
Collapse
|
5
|
Zishen Qingre Tongluo Formula Improves Renal Fatty Acid Oxidation and Alleviated Fibrosis via the Regulation of the TGF- β1/Smad3 Signaling Pathway in Hyperuricemic Nephrology Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2793823. [PMID: 34938805 PMCID: PMC8687854 DOI: 10.1155/2021/2793823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/13/2021] [Indexed: 12/20/2022]
Abstract
Hyperuricemia, an independent risk factor for ensuing chronic kidney disease (CKD), contributed to tubulointerstitial fibrosis and insufficiency of renal fatty acid oxidation. Many studies have shown that renal fatty acid oxidation dysfunction is related to the TGF-β1/Smad3 signaling pathway. We experimented the effects of Zishen Qingre Tongluo Formula (ZQTF) on the adenine/yeast-induced HN rats and uric acid-induced renal mouse tubular epithelial cells (mTECs), determined whether this effect was related to the TGF-β1/Smad3 signaling pathway, and further investigated the relationship between this effect and renal fatty acid oxidation. Rats were given intraperitoneally with adenine (100 mg/kg) and feed chow with 10% yeast for 18 days and then received ZQTF (12.04 g/kg/day) via intragastric gavage for eight weeks. The TGF-β1/Smad3 signaling pathway and renal fatty acid oxidation protein were detected by using western blotting, real-time PCR, and immunohistochemistry staining. mTECs induced by UA were used to investigate the relationship between the TGF-β1/Smad3 signaling pathway and renal fatty acid oxidation. After treatment with ZQTF, levels of UA, 24 h UTP, BUN, and Scr were significantly decreased and histologic injuries were visibly ameliorated in HN rats. Western blotting, real-time PCR, and immunohistochemistry staining revealed that PGC-1α, PPARγ, and PPARα significantly increased, and fibronectin, collagen 1, and P-Smad3 significantly decreased in HN rats and UA-induced mTECs after ZQTF treatment. SIS3 (a specific inhibitor of Smad3) treatment significantly increased the expressions of PGC-1α, PPARγ, and PPARα and decreased the expressions of fibronectin, collagen 1, and P-Smad3 in UA-induced mTECs. Our study demonstrated that ZQTF exhibited renoprotective effects by promoting renal fatty acid oxidation via the regulation of the TGF-β1/Smad3 signaling pathway. Thus, the present results indicated that ZQTF was a novel antifibrotic strategy for hyperuricemic nephropathy.
Collapse
|
6
|
Rosiglitazone Suppresses Renal Crystal Deposition by Ameliorating Tubular Injury Resulted from Oxidative Stress and Inflammatory Response via Promoting the Nrf2/HO-1 Pathway and Shifting Macrophage Polarization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527137. [PMID: 34691355 PMCID: PMC8531781 DOI: 10.1155/2021/5527137] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress and inflammatory response are closely related to nephrolithiasis. This study is aimed at exploring whether rosiglitazone (ROSI), a regulator of macrophage (Mp) polarization, could reduce renal calcium oxalate (CaOx) deposition by ameliorating oxidative stress and inflammatory response. Male C57 mice were equally and randomly divided into 7 groups. Kidney sections were collected on day 5 or day 8 after treatment. Pizzolato staining and polarized light optical microscopy were used to detect crystal deposition. PAS staining and TUNEL assay were performed to assess the tubular injury and cell apoptosis, respectively. Gene expression was assessed by immunohistochemistry, immunofluorescence, ELISA, qRT-PCR, and Western blot. The reactive oxygen species (ROS) level was assessed using a fluorescence microplate and fluorescence microscope. Hydrogen peroxide (H2O2), malonaldehyde (MDA), and glutathione (GSH) were evaluated to determine oxidative stress. Lactic dehydrogenase (LDH) activity was examined to detect cell injury. Adhesion of CaOx monohydrate (COM) crystals to HK-2 cells was detected by crystal adhesion assay. HK-2 cell death or renal macrophage polarization was assessed by flow cytometry. In vivo, renal crystal deposition, tubular injury, crystal adhesion, cell apoptosis, oxidative stress, and inflammatory response were significantly increased in the 7-day glyoxylic acid- (Gly-) treated group but were decreased in the ROSI-treated groups, especially in the groups pretreated with ROSI. Moreover, ROSI significantly reduced renal Mp aggregation and M1Mp polarization but significantly enhanced renal M2Mp polarization. In vitro, ROSI significantly suppressed renal injury, apoptosis, and crystal adhesion of HK-2 cells and markedly shifted COM-stimulated M1Mps to M2Mps, presenting an anti-inflammatory effect. Furthermore, ROSI significantly suppressed oxidative stress by promoting the Nrf2/HO-1 pathway in HK-2 cells. These findings indicate that ROSI could ameliorate renal tubular injury that resulted from oxidative stress and inflammatory response by suppressing M1Mp polarization and promoting M2Mp polarization. Therefore, ROSI is a potential therapeutic and preventive drug for CaOx nephrolithiasis.
Collapse
|
7
|
PPARγ and TGFβ-Major Regulators of Metabolism, Inflammation, and Fibrosis in the Lungs and Kidneys. Int J Mol Sci 2021; 22:ijms221910431. [PMID: 34638771 PMCID: PMC8508998 DOI: 10.3390/ijms221910431] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a type II nuclear receptor, initially recognized in adipose tissue for its role in fatty acid storage and glucose metabolism. It promotes lipid uptake and adipogenesis by increasing insulin sensitivity and adiponectin release. Later, PPARγ was implicated in cardiac development and in critical conditions such as pulmonary arterial hypertension (PAH) and kidney failure. Recently, a cluster of different papers linked PPARγ signaling with another superfamily, the transforming growth factor beta (TGFβ), and its receptors, all of which play a major role in PAH and kidney failure. TGFβ is a multifunctional cytokine that drives inflammation, fibrosis, and cell differentiation while PPARγ activation reverses these adverse events in many models. Such opposite biological effects emphasize the delicate balance and complex crosstalk between PPARγ and TGFβ. Based on solid experimental and clinical evidence, the present review summarizes connections and their implications for PAH and kidney failure, highlighting the similarities and differences between lung and kidney mechanisms as well as discussing the therapeutic potential of PPARγ agonist pioglitazone.
Collapse
|
8
|
Xenoextracellular matrix-rosiglitazone complex-mediated immune evasion promotes xenogenic bioengineered root regeneration by altering M1/M2 macrophage polarization. Biomaterials 2021; 276:121066. [PMID: 34392099 DOI: 10.1016/j.biomaterials.2021.121066] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023]
Abstract
Xenogenic extracellular matrix (xECM)-based organ transplantation will be a promising approach to address the problem of donor shortage for allotransplantation, which has achieved great success in organ regeneration. However, current approaches to utilize xECM-based organ have limited capacity to yield the host a biofriendly microenvironment for long-term immunity homeostasis, compromising the application of these xenografts for repairing and replacing damaged tissues. As the key innate immune cells, macrophages directly determine the prognosis of xenografts in long term. However, it has not been fully elucidated that how to modulate their biological behavior for microenvironment homeostasis in tissue reconstruction. In this study, we report a robust strategy to impart an immunosuppressive surface to naturally sponge-like porous xECM scaffolds by loading rosiglitazone (RSG) to activate peroxisome proliferators receptors-γ (PPAR-γ). The resultant xECM-RSG complex, enabling RSG to be delivered sequentially and continuously to cells without obvious systemic side effects, is recognized as "self" to escape immune monitoring in local immunoregulation by downregulating the expression of proinflammatory NOS2+ M1 macrophages and oxygen species (ROS) through suppressing NF-κB expression, greatly facilitating the regeneration of enthesis anchoring between the transplanted xenograft and host in both heterotopic and orthotopic models. The newly formed bio-root is morphologically and biomechanically equivalent to native tooth root with a significant expression of odontogenic differentiation-related critical proteins. Therefore, the PPAR-γ-NF-κB axis activated by the xECM-RSG complex enables the xenografts to converse towards M2 macrophages with a modest immunosuppressive capacity for facilitating in xECM-based tissue or organ regeneration.
Collapse
|
9
|
Zhao D, Guo J, Liu L, Huang Y. Rosiglitazone attenuates high glucose-induced proliferation, inflammation, oxidative stress and extracellular matrix accumulation in mouse mesangial cells through the Gm26917/miR-185-5p pathway. Endocr J 2021; 68:751-762. [PMID: 33790061 DOI: 10.1507/endocrj.ej20-0783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rosiglitazone (RSG) is widely used to reduce the amount of sugar in the blood of patients with diabetes mellitus. Diabetic nephropathy is the most common microvascular complication of diabetes. The role of RSG in diabetic nephropathy is not fully understood. Diabetic nephropathy model was constructed in high glucose (HG)-treated mouse mesangial cells. The effects of RSG on cell viability and cell cycle were investigated using cell counting kit-8 (CCK-8) assay and flow cytometry assay. Oxidative stress was assessed according to ROS production and SOD activity in cells. Inflammatory responses were assessed according to the releases of inflammatory cytokines. Extracellular matrix (ECM) accumulation was determined by the levels of fibronectin and collagen IV using western blot. The expression of Gm26917 and microRNA-185-5p (miR-185-5p) was detected by quantitative real-time polymerase chain reaction (qPCR). The interaction between Gm26917 and miR-185-5p was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and pull-down assay. RSG significantly inhibited HG-induced proliferation, oxidative stress, inflammatory responses and ECM accumulation in mouse mesangial cells. The expression of Gm26917 was induced by HG but weakened by RSG. Gm26917 knockdown alleviated HG-induced proliferation, oxidative stress, inflammatory responses and ECM accumulation in mouse mesangial cells, and Gm26917 overexpression partly abolished the effects of RSG. Moreover, miR-185-5p was a target of Gm26917, and miR-185-5p inhibition recovered proliferation, oxidative stress, inflammatory responses and ECM accumulation in mouse mesangial cells that were alleviated by Gm26917 knockdown. RSG ameliorated HG-induced mouse mesangial cell proliferation, oxidative stress, inflammation and ECM accumulation partially by governing the Gm26917/miR-185-5p pathway.
Collapse
Affiliation(s)
- Dongbo Zhao
- Department of Endocrinology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| | - Junli Guo
- Department of Nephrology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| | - Lingping Liu
- Department of Endocrinology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| | - Ying Huang
- Department of Endocrinology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| |
Collapse
|
10
|
Deng J, Wang X, Zhou Q, Xia Y, Xiong C, Shao X, Zou H. Inhibition of Glycogen Synthase Kinase 3β Alleviates Chronic Renal Allograft Dysfunction in Rats. Transplantation 2021; 105:757-767. [PMID: 32890133 DOI: 10.1097/tp.0000000000003446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic renal allograft dysfunction (CRAD) is a major condition that impedes the long-term survival of renal allografts. However, the mechanism of CRAD is obscure, and the effective strategies for controlling the progression of CRAD are lacking. The present study used a CRAD rat model to assess the effect of glycogen synthase kinase 3β (GSK-3β) inhibition on the development of CRAD. METHODS A classical F334-to-LEW orthotopic renal transplantation was performed on the CRAD group. The treatment group was treated with the GSK-3β inhibitor 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione for 12 consecutive weeks following renal transplantation. The study included uninephrectomized F344 and Lewis rats as control subjects. Twelve weeks post surgery, the rats were retrieved for analysis of renal function, urine protein levels, histological, immunohistochemical, and molecular biological parameters. RESULTS Administration of 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione inactivated GSK-3β and thereby improved renal function, attenuated proteinuria, and reduced renal tissue damage in CRAD rats. Besides, inactivation of GSK-3β inhibited nuclear factor-κB activation, macrophage infiltration, and expression of multiple proinflammatory cytokines/chemokines. Inhibition of GSK-3β also decreased the levels of malondialdehyde, increased superoxide dismutase levels, upregulated the expression of heme oxygenase-1 and NAD(P)H quinone oxidoreductase-1, and enhanced nuclear translocation of nuclear factor erythroid 2-related factor 2 in the kidneys of CRAD rats. CONCLUSIONS Inhibition of GSK-3β attenuates the development of CRAD by inhibiting inflammation and oxidant stress. Thus, GSK-3β inhibition may represent a potential therapeutic strategy for the prevention and treatment of CRAD.
Collapse
Affiliation(s)
- Jin Deng
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xin Wang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qin Zhou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yue Xia
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Nishi K, Iwai S, Tajima K, Okano S, Sano M, Kobayashi E. Prevention of Chronic Rejection of Marginal Kidney Graft by Using a Hydrogen Gas-Containing Preservation Solution and Adequate Immunosuppression in a Miniature Pig Model. Front Immunol 2021; 11:626295. [PMID: 33679720 PMCID: PMC7925892 DOI: 10.3389/fimmu.2020.626295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
In clinical kidney transplantation, the marginal kidney donors are known to develop chronic allograft rejection more frequently than living kidney donors. In our previous study, we have reported that the hydrogen gas-containing organ preservation solution prevented the development of acute injuries in the kidney of the donor after cardiac death by using preclinical miniature pig model. In the present study, we verified the impact of hydrogen gas treatment in transplantation with the optimal immunosuppressive protocol based on human clinical setting by using the miniature pig model. Marginal kidney processed by hydrogen gas-containing preservation solution has been engrafted for long-term (longer than 100 days). A few cases showed chronic rejection reaction; however, most were found to be free of chronic rejection such as graft tissue fibrosis or renal vasculitis. We concluded that marginal kidney graft from donor after cardiac death is an acceptable model for chronic rejection and that if the transplantation is carried out using a strict immunosuppressive protocol, chronic rejection may be alleviated even with the marginal kidney.
Collapse
Affiliation(s)
- Kotaro Nishi
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Satomi Iwai
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kazuki Tajima
- Laboratory of Small Animal Internal Medicine 2, School of Veterinary Medicine, Kitasato University, Towada, Japan
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shozo Okano
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Kaur T, Singh D, Singh AP, Pathak D, Arora S, Singh B, Kaur S, Singh B. Stevioside protects against rhabdomyolysis-induced acute kidney injury through PPAR-γ agonism in rats. Drug Dev Res 2021; 82:59-67. [PMID: 32737941 DOI: 10.1002/ddr.21722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022]
Abstract
We explored the potential role of peroxisome proliferator activated receptor-γ (PPAR-γ) in stevioside-mediated renoprotection using rhabdomyolysis-induced acute kidney injury (AKI) model in rats. Rhabdomyolysis refers to intense skeletal muscle damage, which further causes AKI. Glycerol (50% w/v, 8 ml/kg) was injected intramuscularly in rats to induce rhabdomyolysis. After 24 hr, AKI was demonstrated by quantifying serum creatinine, urea, creatinine clearance, microproteinuria, and electrolytes in rats. Further, oxidative stress was measured by assaying thiobarbituric acid reactive substances, generation of superoxide anion, and reduced glutathione levels. Additionally, serum creatine kinase (CK) level was assayed to determine glycerol-induced muscle damage in rats. Pathological changes in rat kidneys were studied using hematoxylin-eosin and periodic acid Schiff staining. Moreover, the expression of apoptotic markers (Bcl-2, Bax) in rat kidneys was demonstrated by immunohistochemistry. Stevioside (10, 25, and 50 mg/kg) was administered to rats, prior to the induction of AKI. In a separate group, bisphenol A diglycidyl ether (BADGE, 30 mg/kg), a PPAR-γ receptor antagonist was given prior to stevioside administration, which was followed by rhabdomyolysis-induced AKI in rats. The significant alteration in biochemical and histological parameters in rats indicated AKI, which was attenuated by stevioside treatment. Pretreatment with BADGE abrogated stevioside-mediated renoprotection, which is suggestive of the involvement of PPAR-γ in its renoprotective effect. In conclusion, stevioside protects against rhabdomyolysis-induced AKI, which may be attributed to modulation of PPAR-γ expression.
Collapse
Affiliation(s)
- Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Amrit P Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
13
|
Xenogeneic native decellularized matrix carrying PPARγ activator RSG regulating macrophage polarization to promote ligament-to-bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111224. [DOI: 10.1016/j.msec.2020.111224] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
|
14
|
Differentiating Staphylococcus infection-associated glomerulonephritis and primary IgA nephropathy: a mass spectrometry-based exploratory study. Sci Rep 2020; 10:17179. [PMID: 33057112 PMCID: PMC7560901 DOI: 10.1038/s41598-020-73847-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/18/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus infection-associated glomerulonephritis (SAGN) and primary IgA nephropathy (IgAN) are separate disease entities requiring different treatment approaches. However, overlapping histologic features may cause a diagnostic dilemma. An exploratory proteomic study to identify potential distinguishing biomarkers was performed on formalin fixed paraffin embedded kidney biopsy tissue, using mass spectrometry (HPLC–MS/MS) (n = 27) and immunohistochemistry (IHC) (n = 64), on four main diagnostic groups—SAGN, primary IgAN, acute tubular necrosis (ATN) and normal kidney (baseline transplant biopsies). Spectral counts modeled as a negative binomial distribution were used for statistical comparisons and in silico pathway analysis. Analysis of variance techniques were used to compare groups and the ROC curve to evaluate classification algorithms. The glomerular proteomes of SAGN and IgAN showed remarkable similarities, except for significantly higher levels of monocyte/macrophage proteins in SAGN—mainly lysozyme and S100A9. This finding was confirmed by IHC. In contrast, the tubulointerstitial proteomes were markedly different in IgAN and SAGN, with a lower abundance of metabolic pathway proteins and a higher abundance of extracellular matrix proteins in SAGN. The stress protein transglutaminase-2 (TGM2) was also significantly higher in SAGN. IHC of differentially-expressed glomerular and tubulointerstitial proteins can be used to help discriminate between SAGN and IgAN in ambiguous cases.
Collapse
|
15
|
Establishment of Rat Model of Insulin Resistance Exposed to Chronic Renal Allograft Dysfunction. Transplant Proc 2020; 53:486-490. [PMID: 32768286 DOI: 10.1016/j.transproceed.2020.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND The main cause of chronic renal allograft dysfunction (CRAD) still remains unclear. Insulin resistance (IR) may be a potential inducement, but there is insufficient evidence about this association. We aimed to establish a rat model of CRAD complicated with IR and to explore the function and pathologic changes of the renal allograft induced by IR. METHODS F344-to-Lewis rats of CRAD were fed a high-fat diet to induce IR. They were divided into 3 groups: IR (CRAD+IR), CRAD, and control (CTL). Serum levels of blood urea nitrogen (BUN) and serum creatinine (Scr) were measured to evaluate the renal function. The Homeostasis Model Assessment (HOMA)-IR index was detected by comparing the values of fasting serum insulin levels (FINS) with fasting blood glucose levels (FBG). The pathologic analysis was conducted by the degree of renal lesions including glomerular lesions, renal tubular lesions, hemorrhage, inflammatory cell infiltration, fibrillation, and hyperplasia of the renal interstitium. RESULTS In the second, third, and fourth month after surgery, serum levels of Scr and BUN in the IR group were reduced more than those in the CRAD group, while they were both higher compared to the CTL group, suggesting that renal function in the CRAD group was declined. The HOMA-IR in the IR group was greater than that in the CRAD and CTL groups, showing that simple high-fat diet feeding significantly and steadily increased FINS and FBG in CRAD complicated with IR rats. Pathologic changes indicated that the CRAD rat model was successfully constructed and was still in the early-middle stages of renal lesions 4 months after surgery, yet IR presented a significant effect on CRAD. CONCLUSION These results indicate that the stable CRAD complicated with IR rat model can be established through a high-fat diet in CRAD rats in 4 months, and IR could be an influencing factor.
Collapse
|
16
|
Wang X, Deng J, Xiong C, Chen H, Zhou Q, Xia Y, Shao X, Zou H. Treatment with a PPAR-γ Agonist Protects Against Hyperuricemic Nephropathy in a Rat Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2221-2233. [PMID: 32606592 PMCID: PMC7292262 DOI: 10.2147/dddt.s247091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
Abstract
Purpose Hyperuricemia is an independent risk factor for renal damage and can promote the progression of chronic kidney disease (CKD). In the present study, we employ a rat model to investigate the effects of rosiglitazone (RGTZ), a peroxisome proliferator-activated receptor-gamma agonist, on the development of hyperuricemic nephropathy (HN), and we elucidate the mechanisms involved. Methods An HN rat model was established by oral administration of a mixture of adenine and potassium oxonate daily for 3 weeks. Twenty-four rats were divided into 4 groups: sham treatment, sham treatment plus RGTZ, HN, and HN treated with RGTZ. Results Administration of RGTZ effectively preserved renal function, decreased urine microalbumin, and inhibited interstitial fibrosis and macrophage infiltration in a rat HN model. RGTZ treatment also inhibited TGF-β and NF-κB pathway activation, decreased expression of fibronectin, collagen I, α-SMA, vimentin, MCP-1, RANTES, TNF-α, and IL-1β, and increased E-cadherin expression in the kidneys of HN rats. Furthermore, RGTZ treatment preserved expression of OAT1 and OAT3 in the kidney of HN rats. Conclusion RGTZ attenuates the progression of HN through inhibiting TGF-β signaling, suppressing epithelial-to-mesenchymal transition, reducing inflammation, and lowering serum uric acid levels by preserving expression of urate transporters.
Collapse
Affiliation(s)
- Xin Wang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jin Deng
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Haishan Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qin Zhou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yue Xia
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|