1
|
Yeo HJ, Kang J, Kim YH, Cho WH. Periostin in Bronchiolitis Obliterans Syndrome after Lung Transplant. Int J Mol Sci 2024; 25:10423. [PMID: 39408746 PMCID: PMC11477235 DOI: 10.3390/ijms251910423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The utility of measuring serum periostin levels for predicting the occurrence of bronchiolitis obliterans syndrome (BOS) after lung transplantation remains underexplored. We analyzed differentially expressed genes (DEGs) between initially transplanted lung tissue and lung tissue with BOS from four patients. Periostin levels were assessed in 97 patients who had undergone lung transplantation 1 year post-transplantation and at the onset of BOS. The association between periostin levels and BOS, as well as their correlation with the decline in forced expiratory volume in one second (FEV1), was evaluated. Periostin levels in the BOS group were significantly higher than those in the control group (p < 0.001) and the stable group (p < 0.001). Periostin levels at the onset of BOS were significantly higher than those 1 year post-transplantation in the BOS group (p < 0.001). The serum periostin levels at the time of BOS diagnosis showed a positive correlation with the reduction in FEV1 (%) (r = 0.745, p < 0.001). The increase in the serum periostin levels at the time of BOS diagnosis compared with those 1 year post-transplantation was positively correlated with reduction in FEV1 (%) (r = 0.753, p < 0.001). Thus, serum periostin levels may serve as biomarkers for predicting a decline in lung function in patients with BOS after lung transplantation.
Collapse
Affiliation(s)
- Hye Ju Yeo
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
- Department of Internal Medicine, School of Medicine, Pusan National University, Busan 43241, Republic of Korea
| | - Junho Kang
- Department of research, Keimyung University Donsan Medical Center, Daegu 42601, Republic of Korea;
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
- Department of Internal Medicine, School of Medicine, Pusan National University, Busan 43241, Republic of Korea
| |
Collapse
|
2
|
Zhang C, Wang S, Casal Moura M, Yi ES, Bowen AJ, Specks U, Warrington KJ, Bayan SL, Ekbom DC, Luo F, Edell ES, Kasperbauer JL, Vassallo R. RNA Sequencing of Idiopathic Subglottic Stenosis Tissues Uncovers Putative Profibrotic Mechanisms and Identifies a Prognostic Biomarker. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1506-1530. [PMID: 35948078 DOI: 10.1016/j.ajpath.2022.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Idiopathic subglottic stenosis (iSGS) is a localized airway disease that almost exclusively affects females. Understanding the molecular mechanisms involved may provide insights leading to therapeutic interventions. Next-generation sequencing was performed on tissue sections from patients with iSGS (n = 22), antineutrophil cytoplasmic antibody-associated vasculitis (AAV; n = 5), and matched controls (n = 9) to explore candidate genes and mechanisms of disease. Gene expression changes were validated, and selected markers were identified by immunofluorescence staining. Epithelial-mesenchymal transition (EMT) and leukocyte extravasation pathways were the biological mechanisms most relevant to iSGS pathogenesis. Alternatively activated macrophages (M2) were abundant in the subepithelium and perisubmucosal glands of the airway in iSGS and AAV. Increased expression of the mesenchymal marker S100A4 and decreased expression of the epithelial marker epithelial cell adhesion molecule (EPCAM) further supported a role for EMT, but to different extents, in iSGS and antineutrophil cytoplasmic antibody-associated subglottic stenosis. In patients with iSGS, high expression of prostate transmembrane protein, androgen induced 1 (PMEPA1), an EMT regulator, was associated with a shorter recurrence interval (25 versus 116 months: hazard ratio = 4.16; P = 0.041; 95% CI, 1.056-15.60). Thus, EMT is a key pathogenetic mechanism of subglottic stenosis in iSGS and AAV. M2 macrophages contribute to the pathogenesis of both diseases, suggesting a shared profibrotic mechanism, and PMEPA1 may be a biomarker for predicting disease recurrence in iSGS.
Collapse
Affiliation(s)
- Chujie Zhang
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Marta Casal Moura
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Eunhee S Yi
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Bowen
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ulrich Specks
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | | | - Semirra L Bayan
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Dale C Ekbom
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Eric S Edell
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Jan L Kasperbauer
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Alshaer W, Zureigat H, Al Karaki A, Al-Kadash A, Gharaibeh L, Hatmal MM, Aljabali AAA, Awidi A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol 2021; 905:174178. [PMID: 34044011 DOI: 10.1016/j.ejphar.2021.174178] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
Owing to specific and compelling gene silencing, RNA interference (RNAi) is expected to become an essential approach in treating a variety of infectious, hemato-oncological, cardiovascular, and neurodegenerative conditions. The mechanism of action of small interfering RNA (siRNA) is based on post-transcriptional gene silencing. siRNA molecules are usually specific and efficient in the knockdown of disease-related genes. However, they are characterized by low cellular uptake and are susceptible to nuclease-mediated degradation. Therefore, siRNAs require a carrier for their protection and efficient delivery into target cells. The current review highlights the siRNA-based mechanism of action, challanges, and recent advances in clinical applications.
Collapse
Affiliation(s)
- Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan.
| | - Hadil Zureigat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Arwa Al Karaki
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| | | | - Lobna Gharaibeh
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, 21163, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan; Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan; Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
4
|
Banday MM, Kumar A, Vestal G, Sethi J, Patel KN, O'Neill EB, Finan J, Cheng F, Lin M, Davis NM, Goldberg H, Coppolino A, Mallidi HR, Dunning J, Visner G, Gaggar A, Seyfang A, Sharma NS. N-myc-interactor mediates microbiome induced epithelial to mesenchymal transition and is associated with chronic lung allograft dysfunction. J Heart Lung Transplant 2021; 40:447-457. [PMID: 33781665 DOI: 10.1016/j.healun.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent evidence suggests a role for lung microbiome in occurrence of chronic lung allograft dysfunction (CLAD). However, the mechanisms linking the microbiome to CLAD are poorly delineated. We investigated a possible mechanism involved in microbial modulation of mucosal response leading to CLAD with the hypothesis that a Proteobacteria dominant lung microbiome would inhibit N-myc-interactor (NMI) expression and induce epithelial to mesenchymal transition (EMT). METHODS Explant CLAD, non-CLAD, and healthy nontransplant lung tissue were collected, as well as bronchoalveolar lavage from 14 CLAD and matched non-CLAD subjects, which were followed by 16S rRNA amplicon sequencing and quantitative polymerase chain reaction (PCR) analysis. Pseudomonas aeruginosa (PsA) or PsA-lipopolysaccharide was cocultured with primary human bronchial epithelial cells (PBEC). Western blot analysis and quantitative reverse transcription (qRT) PCR was performed to evaluate NMI expression and EMT in explants and in PsA-exposed PBECs. These experiments were repeated after siRNA silencing and upregulation (plasmid vector) of EMT regulator NMI. RESULTS 16S rRNA amplicon analyses revealed that CLAD patients have a higher abundance of phyla Proteobacteria and reduced abundance of the phyla Bacteroidetes. At the genera level, CLAD subjects had an increased abundance of genera Pseudomonas and reduced Prevotella. Human CLAD airway cells showed a downregulation of the N-myc-interactor gene and presence of EMT. Furthermore, exposure of human primary bronchial epithelial cells to PsA resulted in downregulation of NMI and induction of an EMT phenotype while NMI upregulation resulted in attenuation of this PsA-induced EMT response. CONCLUSIONS CLAD is associated with increased bacterial biomass and a Proteobacteria enriched airway microbiome and EMT. Proteobacteria such as PsA induces EMT in human bronchial epithelial cells via NMI, demonstrating a newly uncovered mechanism by which the microbiome induces cellular metaplasia.
Collapse
Affiliation(s)
- Mudassir M Banday
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Archit Kumar
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Grant Vestal
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Jaskaran Sethi
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Kapil N Patel
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Edward B O'Neill
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Jon Finan
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Feng Cheng
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Muling Lin
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Nicole M Davis
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Hilary Goldberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antonio Coppolino
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hari R Mallidi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - John Dunning
- University of South Florida/Tampa General Hospital,Tampa, Florida
| | - Gary Visner
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amit Gaggar
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Andreas Seyfang
- University of South Florida Morsani College of Medicine/Molecular Medicine, Tampa, Florida
| | - Nirmal S Sharma
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|