1
|
Wang P, Zhang Q, Dias FC, Suttle A, Dong X, Chen Y. TMEM100, a regulator of TRPV1-TRPA1 interaction, contributes to temporomandibular disorder pain. Front Mol Neurosci 2023; 16:1160206. [PMID: 37033371 PMCID: PMC10077888 DOI: 10.3389/fnmol.2023.1160206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
There is an unmet need to identify new therapeutic targets for temporomandibular disorder (TMD) pain because current treatments are limited and unsatisfactory. TMEM100, a two-transmembrane protein, was recently identified as a regulator to weaken the TRPA1-TRPV1 physical association, resulting in disinhibition of TRPA1 activity in sensory neurons. Recent studies have also shown that Tmem100, Trpa1, and Trpv1 mRNAs were upregulated in trigeminal ganglion (TG) after inflammation of the temporomandibular joint (TMJ) associated tissues. These findings raise a critical question regarding whether TMEM100 in TG neurons is involved in TMD pain via regulating the TRPA1-TRPV1 functional interaction. Here, using two mouse models of TMD pain induced by TMJ inflammation or masseter muscle injury, we found that global knockout or systemic inhibition of TRPA1 and TRPV1 attenuated pain. In line with their increased genes, mice exhibited significant upregulation of TMEM100, TRPA1, and TRPV1 at the protein levels in TG neurons after TMD pain. Importantly, TMEM100 co-expressed with TRPA1 and TRPV1 in TG neurons-innervating the TMJ and masseter muscle and their co-expression was increased after TMD pain. Moreover, the enhanced activity of TRPA1 in TG neurons evoked by TMJ inflammation or masseter muscle injury was suppressed by inhibition of TMEM100. Selective deletion of Tmem100 in TG neurons or local administration of TMEM100 inhibitor into the TMJ or masseter muscle attenuated TMD pain. Together, these results suggest that TMEM100 in TG neurons contributes to TMD pain by regulating TRPA1 activity within the TRPA1-TRPV1 complex. TMEM100 therefore represents a potential novel target-of-interest for TMD pain.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, Duke University, Durham, NC, United States
| | - Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, NC, United States
| | - Fabiana C. Dias
- Department of Neurology, Duke University, Durham, NC, United States
| | - Abbie Suttle
- Department of Neurology, Duke University, Durham, NC, United States
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yong Chen
- Department of Neurology, Duke University, Durham, NC, United States
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pathology, Duke University, Durham, NC, United States
- *Correspondence: Yong Chen,
| |
Collapse
|
2
|
Zamith Cunha R, Zannoni A, Salamanca G, De Silva M, Rinnovati R, Gramenzi A, Forni M, Chiocchetti R. Expression of cannabinoid (CB1 and CB2) and cannabinoid-related receptors (TRPV1, GPR55, and PPARα) in the synovial membrane of the horse metacarpophalangeal joint. Front Vet Sci 2023; 10:1045030. [PMID: 36937015 PMCID: PMC10020506 DOI: 10.3389/fvets.2023.1045030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Background The metacarpophalangeal joint undergoes enormous loading during locomotion and can therefore often become inflamed, potentially resulting in osteoarthritis (OA). There are studies indicating that the endocannabinoid system (ECS) modulates synovium homeostasis, and could be a promising target for OA therapy. Some cannabinoid receptors, which modulate proliferative and secretory responses in joint inflammation, have been functionally identified in human and animal synovial cells. Objective To characterize the cellular distribution of the cannabinoid receptors 1 (CB1R) and 2 (CB2R), and the cannabinoid-related receptors transient receptor potential vanilloid type 1 (TRPV1), G protein-related receptor 55 (GPR55) and peroxisome proliferator-activated receptor alpha (PPARα) in the synovial membrane of the metacarpophalangeal joint of the horse. Animals The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. Materials and methods The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. The expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in synovial tissues was studied using qualitative and quantitative immunofluorescence, and quantitative real-time reverse transcriptase PCR (qRT-PCR). Macrophage-like (MLS) and fibroblast-like (FLS) synoviocytes were identified by means of antibodies directed against IBA1 and vimentin, respectively. Results Both the mRNA and protein expression of the CB2R, TRPV1, GPR55, and PPARα were found in the synoviocytes and blood vessels of the metacarpophalangeal joints. The synoviocytes expressed the mRNA and protein of the CB1R in some of the horses investigated, but not in all. Conclusions and clinical importance Given the expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in the synovial elements of the metacarpophalangeal joint, these findings encouraged the development of new studies supporting the use of molecules acting on these receptors to reduce the inflammation during joint inflammation in the horse.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Alessandro Gramenzi
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- *Correspondence: Roberto Chiocchetti
| |
Collapse
|
3
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|
4
|
Nudell Y, Dym H, Sun F, Benichou M, Malakan J, Halpern LR. Pharmacologic Management of Neuropathic Pain. Oral Maxillofac Surg Clin North Am 2021; 34:61-81. [PMID: 34802616 DOI: 10.1016/j.coms.2021.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article aims to provide the practitioner with therapeutic options to treat a broad spectrum of acute and chronic orofacial pain syndromes. The focus will be nonsurgical that the oral health care physician can implement to treat this population of patients. The World Health Organization estimated that more than 1 in every 3 people suffers from acute or chronic pain. This article is primarily devoted to medication management once the diagnosis of neuropathic pain, a true trigeminal neuralgia, or a variant of trigeminal neuralgia often referred to as traumatic neuropathic pain or traumatic trigeminal neuralgia.
Collapse
Affiliation(s)
- Yoav Nudell
- Oral and Maxillofacial Surgery, The Brooklyn Hospital Center, 155 Ashland Place, Brooklyn, NY 11201, USA.
| | - Harry Dym
- The Brooklyn Hospital Center, 155 Ashland Place, Brooklyn, NY 11201, USA
| | - Feiyi Sun
- Oral and Maxillofacial Surgery, The Brooklyn Hospital Center, 155 Ashland Place, Brooklyn, NY 11201, USA
| | - Michael Benichou
- Oral and Maxillofacial Surgery, The Brooklyn Hospital Center, 155 Ashland Place, Brooklyn, NY 11201, USA
| | - Jonathan Malakan
- The Brooklyn Hospital Center, 155 Ashland Place, Brooklyn, NY 11201, USA
| | - Leslie R Halpern
- The University of Utah, School of Dentistry, 530 South Wakara Way, Salt Lake City, UT 84108, USA
| |
Collapse
|
5
|
Teixeira JM, Pimentel RM, Abdalla HB, Sousa HMX, Macedo CG, Napimoga MH, Tambeli CH, Oliveira‐Fusaro MCG, Clemente‐Napimoga JT. P2X7‐induced nociception in the temporomandibular joint of rats depends on inflammatory mechanisms and C‐fibres sensitization. Eur J Pain 2021; 25:1107-1118. [DOI: 10.1002/ejp.1732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juliana M. Teixeira
- Faculdade São Leopoldo Mandic Área de Fisiologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Rafael M. Pimentel
- Faculdade São Leopoldo Mandic Área de Fisiologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Henrique B. Abdalla
- Faculdade São Leopoldo Mandic Área de Fisiologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Hortência M. X. Sousa
- Laboratory of Orofacial Pain Department of Physiology Piracicaba Dental School State University of Campinas (UNICAMP) Piracicaba Brazil
| | - Cristina G. Macedo
- Faculdade São Leopoldo Mandic Área de Fisiologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Marcelo H. Napimoga
- Faculdade São Leopoldo Mandic Área de Imunologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Cláudia H. Tambeli
- Department of Structural and Functional Biology Institute of Biology State University of Campinas (UNICAMP) Campinas Brazil
| | - Maria C. G. Oliveira‐Fusaro
- Laboratory of Studies of Pain and Inflammation School of Applied Sciences State University of Campinas (UNICAMP) Limeira São Paulo Brazil
| | | |
Collapse
|
6
|
Transient Receptor Potential (TRP) Ion Channels in Orofacial Pain. Mol Neurobiol 2021; 58:2836-2850. [PMID: 33515176 DOI: 10.1007/s12035-021-02284-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Orofacial pain, including temporomandibular joint disorders pain, trigeminal neuralgia, dental pain, and debilitating headaches, affects millions of Americans each year with significant population health impact. Despite the existence of a large body of information on the subject, the molecular underpinnings of orofacial pain remain elusive. Two decades of research has identified that transient receptor potential (TRP) ion channels play a crucial role in pathological pain. A number of TRP ion channels are clearly expressed in the trigeminal sensory system and have critical functions in the transduction and pathogenesis of orofacial pain. Although there are many similarities, the orofacial sensory system shows some distinct peripheral and central pain processing and different sensitivities from the spinal sensory system. Relative to the extensive review on TRPs in spinally-mediated pain, the summary of TRPs in trigeminally-mediated pain has not been well-documented. This review focuses on the current experimental evidence involving TRP ion channels, particularly TRPV1, TRPA1, TRPV4, and TRPM8 in orofacial pain, and discusses their possible cellular and molecular mechanisms.
Collapse
|
7
|
Abstract
Pain is a universal experience with profound effects on the physiology, psychology, and sociology of the population. Orofacial pain (OFP) conditions are especially prevalent and can be severely debilitating to a patient's health-related quality of life. Evidence-based clinical trials suggest that pharmacologic therapy may significantly improve patient outcomes either alone or when used as part of a comprehensive treatment plan for OFP. The aim of this article is to provide therapeutic options from a pharmacologic perspective to treat a broad spectrum of OFP. Clinical-based systemic and topical applied pharmaceutical approaches are presented to treat the most common OFP syndromes.
Collapse
Affiliation(s)
- Leslie Halpern
- Residency, Oral and Maxillofacial Surgery, Meharry Medical College, 1005 TB Todd Jr. Boulevard, Nashville, TN 37208, USA.
| | - Porchia Willis
- Oral and Maxillofacial Surgery, Meharry Medical College, 1005 TB Todd Jr. Boulevard, Nashville, TN 37208, USA
| |
Collapse
|
8
|
Wu YW, Hao T, Kou XX, Gan YH, Ma XC. Synovial TRPV1 is upregulated by 17-β-estradiol and involved in allodynia of inflamed temporomandibular joints in female rats. Arch Oral Biol 2015; 60:1310-8. [PMID: 26117090 DOI: 10.1016/j.archoralbio.2015.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/09/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022]
Abstract
Women with reproductive capability are more likely to suffer from temporomandibular disorders (TMD), with orofacial pain as the most common complaint. In the past, we focused on the role of estradiol in TMD pain through the nervous system. In this study, we explored estradiol's influence on synoviocyte gene expressions involved in the allodynia of the inflamed TMJ. The influence of 17-β-estradiol on NGF and TRPV1 expression in TMJ synovium was determined in vivo and in vitro and analyzed by Western blot and real-time PCR. Complete Freund's adjuvant (CFA) injection into the TMJ was used to induce TMJ arthritis. Capsazepine served as a TRPV1 antagonist. Head withdrawal threshold was examined using a von Frey Anesthesiometer. We observed that estradiol upregulated the expressions of TRPV1 and NGF in a dose-dependent manner. In the primary cultured synoviocytes, TRPV1 was upregulated by lipopolysaccharide (LPS), estradiol, and NGF, while NGF antibodies fully blocked LPS and estradiol-induced upregulation of TRPV1. Activation of TRPV1 in the primary synoviocytes with capsaicin, a TRPV1 agonist, dose-dependently enhanced COX-2 transcription. Moreover, intra-TMJ injection of TRPV1 antagonist, capsazepine, significantly attenuated allodynia of the inflamed TMJ induced by intra-TMJ injection of CFA in female rats. This article presents a possible local mechanism for estradiol that may be involved in TMJ inflammation or pain in the synovial membrane through the pain-related gene TRPV1. This finding could potentially help clinicians understand the sexual dimorphism of TMD pain.
Collapse
Affiliation(s)
- Yu-Wei Wu
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China.
| | - Ting Hao
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China
| | - Xiao-Xing Kou
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China
| | - Ye-Hua Gan
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China.
| | - Xu-Chen Ma
- Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China.
| |
Collapse
|
9
|
Bereiter DA, Okamoto K. Neurobiology of estrogen status in deep craniofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:251-84. [PMID: 21708314 DOI: 10.1016/b978-0-12-385198-7.00010-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pain in the temporomandibular joint (TMJ) region often occurs with no overt signs of injury or inflammation. Although the etiology of TMJ-related pain may involve multiple factors, one likely risk factor is female gender or estrogen status. Evidence is reviewed from human and animal studies, supporting the proposition that estrogen status acts peripherally or centrally to influence TMJ nociceptive processing. A new model termed the "TMJ pain matrix" is proposed as critical for the initial integration of TMJ-related sensory signals in the lower brainstem that is both modified by estrogen status, and closely linked to endogenous pain and autonomic control pathways.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | |
Collapse
|
10
|
Denadai-Souza A, Cenac N, Casatti C, de Souza Câmara P, Yshii L, Costa S, Vergnolle N, Muscará M. PAR2 and Temporomandibular Joint Inflammation in the Rat. J Dent Res 2010; 89:1123-8. [DOI: 10.1177/0022034510375284] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The proteinase-activated receptor 2 (PAR2) is a putative therapeutic target for arthritis. We hypothesized that the early pro-inflammatory effects secondary to its activation in the temporomandibular joint (TMJ) are mediated by neurogenic mechanisms. Immunofluorescence analysis revealed a high degree of neurons expressing PAR2 in retrogradely labeled trigeminal ganglion neurons. Furthermore, PAR2 immunoreactivity was observed in the lining layer of the TMJ, co-localizing with the neuronal marker PGP9.5 and substance-P-containing peripheral sensory nerve fibers. The intra-articular injection of PAR2 agonists into the TMJ triggered a dose-dependent increase in plasma extravasation, neutrophil influx, and induction of mechanical allodynia. The pharmacological blockade of natural killer 1 (NK1) receptors abolished PAR2-induced plasma extravasation and inhibited neutrophil influx and mechanical allodynia. We conclude that PAR2 activation is pro-inflammatory in the TMJ, through a neurogenic mechanism involving NK1 receptors. This suggests that PAR2 is an important component of innate neuro-immune response in the rat TMJ.
Collapse
Affiliation(s)
- A. Denadai-Souza
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
- INSERM U563, Centre de Physiopathologie de Toulouse Purpan
| | - N. Cenac
- INSERM U563, Centre de Physiopathologie de Toulouse Purpan
- Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - C.A. Casatti
- Dept. of Basic Sciences, School of Dentistry, São Paulo State University—UNESP, Araçatuba, SP, Brazil
| | - P.R. de Souza Câmara
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
| | - L.M. Yshii
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
| | - S.K.P. Costa
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
| | - N. Vergnolle
- INSERM U563, Centre de Physiopathologie de Toulouse Purpan
- Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - M.N. Muscará
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
| |
Collapse
|
11
|
Temporomandibular joint pain and synovial fluid analysis: a review of the literature. J Oral Maxillofac Surg 2009; 67:2497-504. [PMID: 19837323 DOI: 10.1016/j.joms.2009.04.103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 04/23/2009] [Indexed: 02/06/2023]
Abstract
The pathophysiology of temporomandibular joint pain is not well understood. A significant amount of research has been conducted to evaluate synovial fluid in these patients and in healthy controls. Qualitative and quantitative analyses of the synovial fluid have shown a significant difference between these groups. A multitude of inflammatory mediators and degradation products have been identified. The concentration of these products has been shown to correlate with several clinical parameters including pain, chronicity, severity of degenerative change, and response to treatment. A common inflammatory pathway would appear to be involved in most patients. At the present time, synovial fluid analysis does not have the sensitivity or specificity to allow specific diagnoses and targeted treatment. Continued research with the specific aim of establishing more appropriate therapeutic modalities based on the biochemical pathways is warranted.
Collapse
|
12
|
Molecular Mechanisms of TRPV1-Mediated Pain. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1567-7443(08)10404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Pharmacologic Management of Temporomandibular Disorders. Oral Maxillofac Surg Clin North Am 2008; 20:197-210, vi. [DOI: 10.1016/j.coms.2007.12.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Patwardhan AM, Vela J, Farugia J, Vela K, Hargreaves KM. Trigeminal nociceptors express prostaglandin receptors. J Dent Res 2008; 87:262-6. [PMID: 18296611 DOI: 10.1177/154405910808700306] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Orofacial inflammation is associated with prostaglandin release and the sensitization of nociceptive receptors such as the transient receptor potential subtype V(1) (TRPV(1)). We hypothesized that certain PGE(2) receptor subtypes (EP1-EP4) are co-expressed with TRPV(1) in trigeminal nociceptors and sensitize responses to a TRPV(1) agonist, capsaicin. Accordingly, combined in situ hybridization was performed with immunohistochemistry on rat trigeminal ganglia. We next evaluated the effects of specific EP2 and EP3 agonists (butaprost and sulprostone) in cultured trigeminal ganglia neurons. The results showed that EP2 and EP3 are expressed in trigeminal neurons (58% and 53% of total neurons, respectively) and are co-expressed in TRPV(1)-positive neurons (64% and 67 % of TRPV(1)-positive neurons, respectively). Moreover, most of the cells expressing EP2 or EP3 mRNA were of small to medium diameter (< 30 microm). The application of butaprost and sulprostone triggered neuropeptide exocytosis, and butaprost sensitized capsaicin responses. Analysis of these data, collectively, supports the hypothesis that prostaglandins regulate trigeminal TRPV(1) nociceptors via activation of the EP2 and EP3 receptors.
Collapse
Affiliation(s)
- A M Patwardhan
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
15
|
Sato J, Segami N, Yoshitake Y, Kaneyama K, Yoshimura H, Fujimura K, Kitagawa Y. Specific expression of substance P in synovial tissues of patients with symptomatic, non-reducing internal derangement of the temporomandibular joint: Comparison with clinical findings. Br J Oral Maxillofac Surg 2007; 45:372-7. [DOI: 10.1016/j.bjoms.2006.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2006] [Indexed: 10/23/2022]
|