1
|
Lijten OW, Rosero Salazar DH, van Erp M, Bronkhorst E, Von den Hoff JW. Effect of niche components on masseter satellite cell differentiation on fibrin coatings. Eur J Oral Sci 2022; 130:e12849. [PMID: 35020959 PMCID: PMC9303748 DOI: 10.1111/eos.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
In skeletal muscles, niche factors stimulate satellite cells to activate and induce muscle regeneration after injury. In vitro, matrigel is widely used for myoblast differentiation, however, is unsuitable for clinical applications. Therefore, this study aimed to analyze attachment and differentiation of satellite cells into myotubes on fibrin coatings with selected niche components. The attachment of satellite cells to fibrin alone and fibrin with niche components (laminin, collagen‐IV, laminin‐entactin complex [LEC]) were compared to matrigel. Only on matrigel and fibrin with LEC, Pax7‐positive cells attached well. Then, LEC was selected to analyze proliferation, differentiation, and fusion indices. The proliferation index at day 1 on fibrin‐LEC (22.5%, SD 9.1%) was similar to that on matrigel (30.8% [SD 11.1%]). The differentiation index on fibrin‐LEC (28.7% [SD 6.1%] at day 5 and 32.8% [SD 6.7%] at day 7) was similar to that on matrigel (40.1% [5.1%] at day 5 and 27.1% [SD 4.3%] at day 7). On fibrin‐LEC, the fusion index at day 9 (26.9% [SD 11.5%]) was similar to that on matrigel (25.5% [SD 4.7%]). Our results showed that the addition of LEC enhances the formation of myotubes on fibrin. Fibrin with LEC might be suitable to enhance muscle regeneration after surgery such as cleft palate repair and other muscle defects.
Collapse
Affiliation(s)
- Olivier Willem Lijten
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Doris Haydee Rosero Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali, Colombia
| | - Merijn van Erp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewald Bronkhorst
- Department of Dentistry, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Zastosowanie fibryny w inżynierii tkankowej. Osiągnięcia i perspektywy. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
W ostatnich latach istotnym obszarem zastosowania fibryny stała się inżynieria tkankowa, w której wykorzystuje się naturalne właściwości biostatyczne i bioaktywne fibryny, a także możliwość pułapkowania i wiązania w jej strukturze czynników wzrostu. Fibryna jest najczęściej stosowana w postaci żeli i dysków. Jednak każda postać wskutek pochłaniania wody docelowo przyjmuje postać żelu. Białko to w warunkach in vivo spełnia rolę rusztowania dla komórek, a także może być aplikowane w miejsca trudno dostępne – może wypełniać ubytki tkanek i podtrzymywać tkanki okalające, zapobiegając ich zapadaniu się. Ponadto fibryna hamuje krwawienie i inicjuje proces odnowy, jak również pełni rolę stymulatora wzrostu komórek. Przez modyfikacje struktury fibryny cząsteczkami adhezyjnymi, można przyspieszyć odbudowę prawidłowej struktury tkanek. Jej właściwości strukturalne mogą być także wykorzystywane jako rezerwuar czynników wzrostu i system ich przedłużonego uwalniania. Fibryna jest materiałem biodegradowalnym, umożliwiając skorelowanie ubytku matrycy fibrynowej z odbudową tkanek własnych pacjenta. Wprowadzenie metod druku 3D i elektroprzędzenia umożliwia formulację dopasowanych do uszkodzeń kształtek oraz włóknin bez utraty bioaktywnych funkcji fibryny. Metody te umożliwiają także poprawę właściwości mechanicznych przez otrzymywanie m.in. włóknin fibryny z innymi polimerami, co jest szczególnie uzasadnione w przypadku materiałów stosowanych w odbudowie takich struktur jak ścięgna czy kości. Biotechnologiczna synteza fibrynogenu może w przyszłości uniezależnić pozyskiwanie go z krwi i zwiększyć popularność wyrobów medycznych otrzymywanych z fibryny.
Collapse
|
3
|
Karimi Ghahfarrokhi E, Meimandi-Parizi A, Oryan A, Ahmadi N. Effects of Combination of BMP7, PFG, and Autograft on Healing of the Experimental Critical Radial Bone Defect by Induced Membrane (Masquelet) Technique in Rabbit. THE ARCHIVES OF BONE AND JOINT SURGERY 2021; 9:585-597. [PMID: 34692943 DOI: 10.22038/abjs.2020.50852.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/02/2020] [Indexed: 01/08/2023]
Abstract
Background Healing of large segmental bone defects can be challenging for orthopedic surgeons. This research was conducted to provide further insight into the effects of BMP7 in combination with autograft and platelet fibrin glue (PFG) on bone regeneration by Masquelet technique (MT). Methods Twenty five domestic male rabbits, more than 6 months old, weighing 2.00±0.25 kg were randomly divided into five equal groups as follows: MT-blank cavity (without any biological or synthetic materials) (1), blank cavity (2), MT-autograft (3), MT-autograft-BMP7 (4), and MT-BMP7-PFG (5). A 20 mm segmental defect was made in radial bone in both forelimbs. The Masquelet technique was done in all groups except group 2. The study was evaluated by radiology, biomechanics, histopathology and scanning electron microscopy. Results The results showed that Masquelet technique enhanced the healing process, as, the structural and functional criteria of the injured bone showed significantly improved bone healing (P<0.05). Treatment by PFG-BMP7, Autograft-BMP7, and autograft demonstrated beneficial effects on bone healing. However, Autograft-BMP7 was more effective than autograft in healing of the radial defect in rabbits. Conclusion Our findings introduce the osteogenic materials in combination with Masquelet technique as an alternative for reconstruction of the big diaphyseal defects in the long bones in animal models. Our findings may be useful for clinical application in future.
Collapse
Affiliation(s)
| | | | - Ahmad Oryan
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrollah Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Charles-de-Sá L, Gontijo-de-Amorim N, Sbarbati A, Benati D, Bernardi P, Borojevic R, Carias RBV, Rigotti G. Photoaging Skin Therapy with PRP and ADSC: A Comparative Study. Stem Cells Int 2020; 2020:2032359. [PMID: 32724312 PMCID: PMC7381954 DOI: 10.1155/2020/2032359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/20/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Stem cells from adipose tissue (ADSCs) and platelet-rich plasma (PRP) are innovative modalities that arise due to their regenerative potential. OBJECTIVE The aim of this study was to characterize possible histological changes induced by PRP and ADSC therapies in photoaged skin. METHODS A prospective randomized study involving 20 healthy individuals, showing skin aging. They underwent two therapeutic protocols (protocol 1: PRP; protocol 2: ADSCs). Biopsies were obtained before and after treatment (4 months). RESULTS PRP protocol showed unwanted changes in the reticular dermis, mainly due to the deposition of a horizontal layer of collagen (fibrosis) and elastic fibers tightly linked. Structural analyses revealed infiltration of mononuclear cells and depot of fibrotic material in the reticular dermis. The ADSC protocol leads to neoelastogenesis with increase of tropoelastin and fibrillin. There was an improvement of solar elastosis inducing an increment of macrophage polarization and matrix proteinases. These last effects are probably related to the increase of elastinolysis and the remodeling of the dermis. CONCLUSIONS The PRP promoted an inflammatory process with an increase of reticular dermis thickness with a fibrotic aspect. On the other hand, ADSC therapy is a promising modality with an important antiaging effect on photoaged human skin.
Collapse
Affiliation(s)
- Luiz Charles-de-Sá
- 1Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro-CCS-Bloco C, Avenida Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil
| | - Natale Gontijo-de-Amorim
- 2Dipartamento di Scienze Neurologiche e del Movimento, Sezione di Anatomia e Istologia della Universitá degli Studi di Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Andrea Sbarbati
- 2Dipartamento di Scienze Neurologiche e del Movimento, Sezione di Anatomia e Istologia della Universitá degli Studi di Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Donatella Benati
- 2Dipartamento di Scienze Neurologiche e del Movimento, Sezione di Anatomia e Istologia della Universitá degli Studi di Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Paolo Bernardi
- 2Dipartamento di Scienze Neurologiche e del Movimento, Sezione di Anatomia e Istologia della Universitá degli Studi di Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Radovan Borojevic
- 3Universidade Federal do Rio de Janeiro-UFRJ-CCS and Centro de Biotecnologia-IMETRO, Rio de Janeiro, Brazil
| | - Rosana Bizon Vieira Carias
- 3Universidade Federal do Rio de Janeiro-UFRJ-CCS and Centro de Biotecnologia-IMETRO, Rio de Janeiro, Brazil
| | - Gino Rigotti
- 4Casa di Cura San Francesco-Unità di Chirurgia Rigenerativa, Via Monte Ortigara, 21, Verona, Italy
| |
Collapse
|
5
|
Revathy NS, Kannan R, Karthik RS, Kumar MSS, Munshi MAI, Vijay R. Comparative study on alveolar bone healing in postextraction socket versus healing aided with autologous platelet-rich fibrin following surgical removal of bilateral mandibular impacted third molar tooth: A radiographic evaluation. Natl J Maxillofac Surg 2018; 9:140-146. [PMID: 30546227 PMCID: PMC6251295 DOI: 10.4103/njms.njms_17_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: This study was to evaluate and compare the bone regeneration potential of autologous platelet-rich fibrin (PRF) placed in one of the extracted sockets after the surgical removal of bilateral impacted mandibular third molars. Patients and Methods: Twenty-five patients (10 females and 15 males; 18–35 years old) were taken for surgical removal of bilateral impacted mandibular third molar, performed in the same session. The autologous PRF was placed in one of the extracted sockets whereas the opposite side was taken as control side, and primary closure was done. Radiographic examination with orthopantomogram was done preoperatively and 1 month, 3 months, and 6 months postoperatively to assess the degree of bone regeneration at the extracted site and compare it with the control side using MATLAB software and the data are statistically analyzed using paired t-test. Results: PRF side had better healing and bone formation when compared with the control side as indicated by significant P values of (P = 0.06>5%) 1 month, (P = 0.00<1%) 3 month, and (P = 0.00<1%) 6 month postoperatively. The repeated-measures ANOVA showed a significant difference seen on 1st, 3rd, and 6th months postoperatively on PRF side (P = 0.001). Conclusion: The autologous PRF improves and fastens the bone regeneration and healing in the extracted sockets.
Collapse
Affiliation(s)
- N Santhoshi Revathy
- Department of Oral and Maxillofacial Surgery, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - R Kannan
- Department of Oral and Maxillofacial Surgery, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - R S Karthik
- Department of Oral and Maxillofacial Surgery, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - M S Senthil Kumar
- Department of Oral and Maxillofacial Surgery, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - M A I Munshi
- Department of Oral and Maxillofacial Surgery, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - R Vijay
- Department of Oral and Maxillofacial Surgery, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| |
Collapse
|
6
|
Meimandi-Parizi A, Oryan A, Gholipour H. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats. Connect Tissue Res 2018; 59:332-344. [PMID: 29035127 DOI: 10.1080/03008207.2017.1387541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Different biomaterials have been used in orthopedic surgery. Evaluation of biomaterials for bone healing promotion has been a wide area of research of the orthopedic field. Sixty critical size defects of 5 mm long were bilaterally created in the radial diaphysis of 30 rats. The animals were randomly divided into six equal groups as empty defect, autograft, nanohydroxyapatite (nHA), Gelatin (Gel)-nHA, fibrin-platelet glue (FPG)-nHA, and Gel-FPG-nHA groups (n = 10 in each group). Radiographs of each forelimb were taken postoperatively on the 1st day and then at the 28th and 56th days post injury. After 56 days, the rats were euthanized and their harvested healing bone samples were evaluated by histopathology, scanning electron microscopy, and biomechanical testing. All the treated defects demonstrated significantly superior new bone formation, remodeling, and bone tissue volume. Moreover, the defects treated with FPG-nHA showed significantly higher ultimate load, yield load, and stiffness. The Gel-FPG-nHA moderately improved bone regeneration that was not close to the autograft in some parameters, whereas FPG-nHA significantly improved bone healing closely comparable with the autograft group in most parameters. In conclusion, although all the nHA-containing scaffolds had some beneficial effects on bone regeneration, the FPG-nHA scaffold was more effective in improving the structural and functional properties of the newly formed bone and was more osteoinductive than the Gel and was comparable to the autograft. Therefore, the FPG can be regarded as a promising option to be used in conjunction with mineral scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Abdolhamid Meimandi-Parizi
- a Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Ahmad Oryan
- b Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Hojjat Gholipour
- a Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| |
Collapse
|
7
|
Gessmann J, Seybold D, Ayami F, Peter E, Baecker H, Schildhauer TA, Köller M. Peripheral Blood Plasma Clot as a Local Antimicrobial Drug Delivery Matrix. Tissue Eng Part A 2018; 24:809-818. [DOI: 10.1089/ten.tea.2017.0319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jan Gessmann
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Dominik Seybold
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Fahim Ayami
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Elvira Peter
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Hinnerk Baecker
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Thomas Armin Schildhauer
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Manfred Köller
- Department of Surgical Research, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Charles-de-Sá L, Gontijo-de-Amorim NF, Takiya CM, Borojevic R, Benati D, Bernardi P, Sbarbati A, Rigotti G. Effect of Use of Platelet-Rich Plasma (PRP) in Skin with Intrinsic Aging Process. Aesthet Surg J 2018; 38:321-328. [PMID: 29040421 DOI: 10.1093/asj/sjx137] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND In previous papers, we demonstrated that the treatment of human photoaged skin with stromal-vascular fraction-enriched fat or expanded adipose-derived stem cells showed a decrease of elastosis and the appearance of new oxytalan elastic fibers in dermis and an increase in the vascular network. The utilization of fat plus platelet-rich plasma (PRP) led to an increase in the vascular permeability and reactivity of the nervous component. OBJECTIVES The purpose of this study was to analyze the histologic and ultrastructural changes of human skin after the injection of only PRP in the retroauricular area that was not exposed to sun and did not present the photoaging process, in comparison with our previous results. METHODS This study was performed in 13 patients who were candidates for facelift and whose ages ranged between 45 and 65 years. The PRP injection was performed in the mastoidea area. Fragments of skin were removed before and 3 months after treatment and analyzed by optical and electron microscopy. RESULTS After the injection of PRP, we observed an increase of reticular dermis thickness because of the deposition of elastic fibers and collagen, with a fibrotic aspect. A modified pattern of adipose tissue was also found at the dermohypodermal junction. Significative regenerative aspects were not found at histologic and ultrastructural analysis. The presence of foci of moderate inflammation and microangiopathy were observed. CONCLUSIONS Treatment with PRP increased reticular dermis thickness with a fibrotic aspect. In the long term, the presence of inflammation and microangiopathy caused by PRP injection could lead to trophic alteration of the skin and the precocious aging process. LEVEL OF EVIDENCE 4
Collapse
Affiliation(s)
| | | | | | - Radovan Borojevic
- Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Andrea Sbarbati
- Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Verona, Italy
| | - Gino Rigotti
- Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy
| |
Collapse
|
9
|
Clinical Applications of Injectable Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:163-182. [DOI: 10.1007/978-981-13-0947-2_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
The effects of gelatin, fibrin-platelet glue and their combination on healing of the experimental critical bone defect in a rat model: radiological, histological, scanning ultrastructural and biomechanical evaluation. Cell Tissue Bank 2017; 19:341-356. [PMID: 29264693 DOI: 10.1007/s10561-017-9679-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
Fibrin-platelet glue (FPG) is a blood derivative, in which platelets and fibrinogen are concentrated in a small plasma volume, by differential centrifugation and precipitation. It can form a three-dimensional and biocompatible fibrin scaffold with a myriad of growth factors and proteins that are released progressively to the local environment and contribute to the accelerated postoperative bone healing. Gelatin (Gel) is a derivative of collagen and can promote cell adhesion and proliferation due to its unique sequence of amino acids, so it is suitable for bone tissue applications. This study examined the effects of Gel, FPG and their combinations as bone scaffold on the healing of surgically created critical-size defects in rat radius. Fifty critical size defects of 5 mm long were bilaterally created in the radial diaphysis of 25 rats. The animals were randomly divided into five equal groups as empty defect, autograft, Gel, FPG and Gel-FPG groups (n = 10 in each group). Radiographs of each forelimb were taken postoperatively on the 1st day and then at the 28th and 56th days post injury to evaluate bone formation, union and remodeling of the defect. After 56 days, the rats were euthanized and their harvested healing bone samples were evaluated by histopathology, scanning electron microscopy (SEM) and biomechanical testing. The results of present study showed that the Gel alone did not significantly affect bone healing and regeneration; however, the Gel treated defects promoted healing more than those that were left untreated (negative control). Furthermore, the FPG-enhanced grafts provided a good scaffold containing numerous growth factors for proliferation of osteoinduction and was effective in improving the structural and functional properties of the newly formed bone more than that of the untreated and also the Gel treated groups. Incorporation of Gel into the FPG scaffold improved healing potential of the FPG scaffold; however, it was still inferior to the autograft (positive control). Although the Gel-FPG scaffolds had best effectiveness during bone regeneration, it still needs to be further enhanced by incorporation of the ceramic and osteoinductive biomaterials.
Collapse
|
11
|
Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 2017; 12:4937-4961. [PMID: 28761338 PMCID: PMC5516781 DOI: 10.2147/ijn.s124671] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications.
Collapse
Affiliation(s)
- Alireza Noori
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran
| | | | - Roza Vaez-Ghaemi
- Department of Chemical and Biological Engineering, Faculty of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
12
|
Rigotti G, Charles-de-Sá L, Gontijo-de-Amorim NF, Takiya CM, Amable PR, Borojevic R, Benati D, Bernardi P, Sbarbati A. Expanded Stem Cells, Stromal-Vascular Fraction, and Platelet-Rich Plasma Enriched Fat: Comparing Results of Different Facial Rejuvenation Approaches in a Clinical Trial. Aesthet Surg J 2016; 36:261-70. [PMID: 26879294 DOI: 10.1093/asj/sjv231] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In a previous study, the authors demonstrated that treatment with expanded adipose-derived stem cells or stromal vascular fraction (SVF)-enriched fat modify the pattern of the dermis in human beings, representing a skin rejuvenation effect. Considering that expanded stem cells require a cell factor, the authors wanted to assess similar results by replacing them with platelet-rich plasma (PRP), which is easier to obtain and for which an empirical regenerative effect has been already described. OBJECTIVES To determine if PRP injection could replace the cutaneous regenerative effect of adipose-derived stem cells. METHODS This study was performed in 13 patients who were candidates for facelift. The patients underwent sampling of fat by liposuction from the abdomen and submitted to one of three protocols: injection of SVF-enriched fat or expanded adipose-derived stem cells or fat plus PRP in the preauricular areas. Fragments of skin were removed before and 3 months after treatment and analyzed by optical and electron microscopy. RESULTS The use of fat plus PRP led to the presence of more pronounced inflammatory infiltrates and a greater vascular reactivity, increasing in vascular permeability and a certain reactivity of the nervous component. The addition of PRP did not improve the regenerative effect. CONCLUSION The use of PRP did not have significant advantages in skin rejuvenation over the use of expanded adipose-derived stem cells or SVF-enriched fat. The effect of increased vascular reactivity may be useful in pathological situations in which an intense angiogenesis is desirable, such as tissular ischemia.
Collapse
Affiliation(s)
- Gino Rigotti
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Charles-de-Sá is PhD student and Dr Takiya is a Professor, Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Dr Ferreira Gontijo-de-Amorim is a PhD course student at Verona University, Drs Benati and Berdardi are Researchers, and Dr Sbarbati is a Professor and Chief, Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Italy. Dr Amable is a Researcher and Dr Borojevic is Chief, Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil
| | - Luiz Charles-de-Sá
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Charles-de-Sá is PhD student and Dr Takiya is a Professor, Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Dr Ferreira Gontijo-de-Amorim is a PhD course student at Verona University, Drs Benati and Berdardi are Researchers, and Dr Sbarbati is a Professor and Chief, Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Italy. Dr Amable is a Researcher and Dr Borojevic is Chief, Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil
| | - Natale Ferreira Gontijo-de-Amorim
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Charles-de-Sá is PhD student and Dr Takiya is a Professor, Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Dr Ferreira Gontijo-de-Amorim is a PhD course student at Verona University, Drs Benati and Berdardi are Researchers, and Dr Sbarbati is a Professor and Chief, Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Italy. Dr Amable is a Researcher and Dr Borojevic is Chief, Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Charles-de-Sá is PhD student and Dr Takiya is a Professor, Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Dr Ferreira Gontijo-de-Amorim is a PhD course student at Verona University, Drs Benati and Berdardi are Researchers, and Dr Sbarbati is a Professor and Chief, Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Italy. Dr Amable is a Researcher and Dr Borojevic is Chief, Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil
| | - Paola Romina Amable
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Charles-de-Sá is PhD student and Dr Takiya is a Professor, Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Dr Ferreira Gontijo-de-Amorim is a PhD course student at Verona University, Drs Benati and Berdardi are Researchers, and Dr Sbarbati is a Professor and Chief, Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Italy. Dr Amable is a Researcher and Dr Borojevic is Chief, Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil
| | - Radovan Borojevic
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Charles-de-Sá is PhD student and Dr Takiya is a Professor, Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Dr Ferreira Gontijo-de-Amorim is a PhD course student at Verona University, Drs Benati and Berdardi are Researchers, and Dr Sbarbati is a Professor and Chief, Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Italy. Dr Amable is a Researcher and Dr Borojevic is Chief, Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil
| | - Donatella Benati
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Charles-de-Sá is PhD student and Dr Takiya is a Professor, Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Dr Ferreira Gontijo-de-Amorim is a PhD course student at Verona University, Drs Benati and Berdardi are Researchers, and Dr Sbarbati is a Professor and Chief, Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Italy. Dr Amable is a Researcher and Dr Borojevic is Chief, Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil
| | - Paolo Bernardi
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Charles-de-Sá is PhD student and Dr Takiya is a Professor, Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Dr Ferreira Gontijo-de-Amorim is a PhD course student at Verona University, Drs Benati and Berdardi are Researchers, and Dr Sbarbati is a Professor and Chief, Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Italy. Dr Amable is a Researcher and Dr Borojevic is Chief, Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil
| | - Andrea Sbarbati
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Charles-de-Sá is PhD student and Dr Takiya is a Professor, Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Dr Ferreira Gontijo-de-Amorim is a PhD course student at Verona University, Drs Benati and Berdardi are Researchers, and Dr Sbarbati is a Professor and Chief, Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Italy. Dr Amable is a Researcher and Dr Borojevic is Chief, Excellion Biomedical Services, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Abstract
Ultrasonography (USG) is a safe, easily available, and cost-effective modality, which has the additional advantage of being real time for imaging and image-guided interventions of the musculoskeletal system. Musculoskeletal interventions are gaining popularity in sports and rehabilitation for rapid healing of muscle and tendon injuries in professional athletes, healing of chronic tendinopathies, aspiration of joint effusions, periarticular bursae and ganglia, and perineural injections in acute and chronic pain syndromes. This article aims to provide an overview of the spectrum of musculoskeletal interventions that can be done under USG guidance both for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Aditya Ravindra Daftary
- Department of InnoVision Imaging, Section of Musculoskeletal Imaging, Sportsmed Mumbai, Mumbai, Maharashtra, India
| | - Alpana Sudhir Karnik
- Department of InnoVision Imaging, Section of Musculoskeletal Imaging, Sportsmed Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
14
|
Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. MATERIALS 2015; 8:1778-1816. [PMID: 28788032 PMCID: PMC5507058 DOI: 10.3390/ma8041778] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
Abstract
Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs). BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.
Collapse
|
15
|
Al-Khawlani E, Adly OA, Hamed TAA, Abass AH, Abdelmabood AA. Clinical and radiographic evaluation of platelet-rich fibrin gel on the outcome of mandibular fracture. EGYPTIAN JOURNAL OF ORAL & MAXILLOFACIAL SURGERY 2014; 5:77-83. [DOI: 10.1097/01.omx.0000452512.32326.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Gessmann J, Seybold D, Peter E, Schildhauer TA, Köller M. Plasma clots gelled by different amounts of calcium for stem cell delivery. Langenbecks Arch Surg 2012; 398:161-7. [DOI: 10.1007/s00423-012-1015-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
|
17
|
McDuffee LA, Pack L, Lores M, Wright GM, Esparza-Gonzalez B, Masaoud E. Osteoprogenitor Cell Therapy in an Equine Fracture Model. Vet Surg 2012; 41:773-83. [DOI: 10.1111/j.1532-950x.2012.01024.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laurie A. McDuffee
- Departments of Health Management; University of Prince Edward Island; Charlottetown; PEI; Canada
| | - LeeAnn Pack
- Companion Animals; University of Prince Edward Island; Charlottetown; PEI; Canada
| | - Marcos Lores
- Departments of Health Management; University of Prince Edward Island; Charlottetown; PEI; Canada
| | - Glenda M. Wright
- Biomedical Sciences; University of Prince Edward Island; Charlottetown; PEI; Canada
| | - Blanca Esparza-Gonzalez
- Departments of Health Management; University of Prince Edward Island; Charlottetown; PEI; Canada
| | | |
Collapse
|
18
|
Combination of guided osteogenesis with autologous platelet-rich fibrin glue and mesenchymal stem cell for mandibular reconstruction. ACTA ACUST UNITED AC 2011; 70:228-37. [PMID: 20664370 DOI: 10.1097/ta.0b013e3181e12b56] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND This study examined whether a combination of autologous platelet-rich fibrin glue (PRFG) with mesenchymal stem cells (MSCs) and MEDPOR as guided tissue regeneration (GTR) could act as an osteogenic substitute and whether this treatment yields faster new bone formation than MEDPOR alone or PRFG plus MSC. MATERIAL MSCs were harvested and isolated from the bone marrow of dog ilium. Full-thickness bony defects (1.5×1.5 cm) were created in the bilateral mandible angles of the dog. Treatments for bone defect in each group were as follows: group I (n=4), MEDPOR sheet as GTR and autologous PRFG/MSCs admixtures; group II (n=4), autologous PRFG/MSCs admixtures; group III (n=4), MEDPOR sheet as GTR; and group IV (n=4), control (empty defect). The percentage of new bone regeneration in computerized tomography at 2 months and 4 months was calculated by Analyze version 7.0 software. The mandibles were harvested from all specimens at 4 months, and the grafted sites were evaluated by gross, histologic, and X-ray examination. RESULTS By radiographic analysis at 16 weeks posttransplantation, it was shown that an average of 72.8%±8.02% new bone formation in group I, 53.34%±6.87% in group II, 26.58%±6.41% in group III, and 15.14%±2.37% in group IV. Histologic examination revealed that the defect was repaired by typical bone tissue in groups I and II, whereas only minimal bone formation with fibrous connection was observed in the groups III and IV group. Besides, muscle incarceration was found in groups II and IV without MEDPOR as GTR. CONCLUSION Autologous PRFG plus osteoinduced MSCs have good potential for bone regeneration. In combination with MEDPOR as GTR, bone regeneration is enhanced by preventing soft tissue ingrowth hindering bone regeneration.
Collapse
|
19
|
Molina-Miñano F, López-Jornet P, Camacho-Alonso F, Vicente-Ortega V. Plasma rich in growth factors and bone formation: a radiological and histomorphometric study in New Zealand rabbits. Braz Oral Res 2010; 23:275-80. [PMID: 19893962 DOI: 10.1590/s1806-83242009000300009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 04/06/2009] [Indexed: 11/22/2022] Open
Abstract
A radiographic and histomorphometric study was conducted on the influence of autologous plasma rich in growth factors (PRGF) upon bone healing in surgically created defects in rabbits. Radiographically, bone regeneration was significantly greater with the use of PRGF after one month (p = 0.005), though no differences were recorded after the second month. In the histomorphometric analysis one month after surgery, the defects filled with autologous bone plus PRGF showed a greater percentage of neoformed bone (35.01 +/- 5.31) than the control defects (22.90 +/- 12.23), though the differences were not significant. Two months after surgery, the defects filled with autologous bone showed greater regeneration (46.04 +/- 10.36%) than the control defects (30.59 +/- 5.69%), though the differences were not significant. The application of PRGF in the bone defects produced in New Zealand rabbits exerted a limited effect on local bone formation.
Collapse
|
20
|
Kretlow JD, Spicer PP, Jansen JA, Vacanti CA, Kasper FK, Mikos AG. Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects. Tissue Eng Part A 2010; 16:3555-68. [PMID: 20715884 DOI: 10.1089/ten.tea.2010.0471] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For bone tissue engineering, the benefits of incorporating mesenchymal stem cells (MSCs) into porous scaffolds are well established. There is, however, little consensus on the effects of or need for MSC handling ex vivo. Culture and expansion of MSCs adds length and cost, and likely increases risk associated with treatment. We evaluated the effect of using uncultured bone marrow mononuclear cells (bmMNCs) encapsulated within fibrin glue hydrogels and seeded into porous scaffolds to regenerate bone over 12 weeks in an 8-mm-diameter, critical-sized rat cranial defect. A full factorial experimental design was used to evaluate bone formation within model poly(L-lactic acid) and corraline hydroxyapatite scaffolds with or without platelet-rich plasma (PRP) and bmMNCs. Mechanical push-out testing, microcomputed tomographical analyses, and histology were performed. PRP showed no benefit for bone formation. Cell-laden poly(L-lactic acid) scaffolds without PRP required significantly greater force to displace from surrounding tissues than control (cell-free) scaffolds, but no differences were observed during push-out testing of coral scaffolds. For bone volume formation as analyzed by microcomputed tomography, significant positive overall effects were observed with bmMNC incorporation. These data suggest that bmMNCs may provide therapeutic advantages in bone tissue engineering applications without the need for culture, expansion, and purification.
Collapse
Affiliation(s)
- James D Kretlow
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
21
|
Cui G, Li J, Lei W, Bi L, Tang P, Liang Y, Tao S, Wang Y. The mechanical and biological properties of an injectable calcium phosphate cement-fibrin glue composite for bone regeneration. J Biomed Mater Res B Appl Biomater 2010; 92:377-85. [PMID: 19904823 DOI: 10.1002/jbm.b.31525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium phosphate cement (CPC) that can be injected to form a scaffold in situ has promise for the repair of bone defects. However, its low-strength limits the CPC to non-stress-bearing repairs. Fibrin glue (FG) with good sticking property and biocompatibility is possible used to reinforce the CPC. The objective of this study was to investigate the effects of FG on the mechanical and biological properties of CPC in an injectable CPC-FG composite. The initial setting time of this CPC-FG was delayed compared with the CPC control at different powder/liquid (P/L) mass ratio (p > 0.05). At a P/L of 5, the strength was (38.41 +/- 4.32) MPa for the CPC-FG, much higher than (27.42 +/- 2.85) MPa for the CPC alone (p < 0.05). SEM showed bone marrow stromal cells (BMSCs) with healthy spreading and anchored on the CPC-FG composite. After 14 days, the alkaline phosphatase (ALP) activity was (538 +/- 33) for the BMSCs on the CPC-FG and (517 +/- 27) for the BMSCs on the CPC alone. Both ALPs were higher than the baseline ALP (93 +/- 10) for the undifferentiated BMSCs (p < 0.05). The results demonstrate that this stronger CPC-FG scaffold may be useful for stem cell-based bone regeneration in moderate load-bearing orthopedic applications.
Collapse
Affiliation(s)
- Geng Cui
- Institute of Orthopedics, General Hospital of PLA, Beijing 100853, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gallego L, Junquera L, García E, García V, Álvarez-Viejo M, Costilla S, Fresno MF, Meana Á. Repair of Rat Mandibular Bone Defects by Alveolar Osteoblasts in a Novel Plasma-Derived Albumin Scaffold. Tissue Eng Part A 2010; 16:1179-87. [DOI: 10.1089/ten.tea.2009.0517] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lorena Gallego
- Department of Oral and Maxillofacial Surgery, Cabueñes Hospital, Gijón, Spain
| | - Luis Junquera
- Department of Oral and Maxillofacial Surgery, University Central Hospital, Oviedo, Spain
- University of Medicine, Oviedo, Spain
| | - Eva García
- Tissue Engineering Research Unit, Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain
| | | | - María Álvarez-Viejo
- Tissue Engineering Research Unit, Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain
- Transplant and Cell Therapy Unit, Central University Hospital, Oviedo, Spain
| | - Serafín Costilla
- University of Medicine, Oviedo, Spain
- Department of Radiology, Central University Hospital, Oviedo, Spain
| | - Manuel F. Fresno
- University of Medicine, Oviedo, Spain
- Department of Pathology, Central University Hospital, Oviedo, Spain
| | - Álvaro Meana
- Tissue Engineering Research Unit, Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain
| |
Collapse
|
23
|
Dohan Ehrenfest DM, Doglioli P, de Peppo GM, Del Corso M, Charrier JB. Choukroun's platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. Arch Oral Biol 2010; 55:185-94. [PMID: 20176344 DOI: 10.1016/j.archoralbio.2010.01.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 01/04/2010] [Accepted: 01/15/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND Choukroun's platelet-rich fibrin (PRF) is an autologous leukocyte- and platelet-rich fibrin biomaterial. The purpose of this study was to analyse the in vitro effects of PRF on human bone mesenchymal stem cells (BMSC), harvested in the oral cavity after preimplant endosteal stimulation. MATERIALS AND METHODS BMSCs from primary cultures were cultivated with or without a PRF membrane originating from the same donor as for the cells, in proliferation or osteoblastic differentiation conditions. After 7 days, the PRF membranes were removed. A series of cultures were performed using 2 PRF membranes, in order to measure the dose-dependent effect. Cell counts, cytotoxicity tests, alkaline phosphatase (ALP) activity quantification, Von Kossa staining and mineralisation nodules counts were performed at 3, 7, 14, 21 and 28 days. A last independent series was carried on up to 14 days, for a morphological scanning electron microscope (SEM) observation. RESULTS PRF generated a significant stimulation of the BMSC proliferation and differentiation throughout the experimental period. This effect was dose-dependent during the first weeks in normal conditions, and during the whole experimentation in differentiation conditions. The cultures without PRF in differentiation conditions did not rise above the degree of differentiation of the cultures in normal conditions with 1 or 2 PRF up to the 14th and 28th day, respectively. The SEM culture analysis at day 14 allowed to show the mineralisation nodules which were more numerous and more structured in the groups with PRF compared to the control groups. DISCUSSION AND CONCLUSIONS This double contradictory proliferation/differentiation result may be due to the numerous components of PRF, particularly the presence of leukocytes: any culture with PRF is in fact a coculture with leukocytes. It could be the source of differential geographic regulation processes within the culture. The combination of oral BMSC and PRF might offer many potential clinical and biotechnological applications, and deserves new studies.
Collapse
Affiliation(s)
- David M Dohan Ehrenfest
- Department of Biomaterials, Institute for Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:199-215. [PMID: 18544016 DOI: 10.1089/ten.teb.2007.0435] [Citation(s) in RCA: 593] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tissue engineering combines cell and molecular biology with materials and mechanical engineering to replace damaged or diseased organs and tissues. Fibrin is a critical blood component responsible for hemostasis, which has been used extensively as a biopolymer scaffold in tissue engineering. In this review we summarize the latest developments in organ and tissue regeneration using fibrin as the scaffold material. Commercially available fibrinogen and thrombin are combined to form a fibrin hydrogel. The incorporation of bioactive peptides and growth factors via a heparin-binding delivery system improves the functionality of fibrin as a scaffold. New technologies such as inkjet printing and magnetically influenced self-assembly can alter the geometry of the fibrin structure into appropriate and predictable forms. Fibrin can be prepared from autologous plasma, and is available as glue or as engineered microbeads. Fibrin alone or in combination with other materials has been used as a biological scaffold for stem or primary cells to regenerate adipose tissue, bone, cardiac tissue, cartilage, liver, nervous tissue, ocular tissue, skin, tendons, and ligaments. Thus, fibrin is a versatile biopolymer, which shows a great potential in tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
25
|
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008; 2:81-96. [DOI: 10.1002/term.74] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Everts PA, Overdevest EP, Jakimowicz JJ, Oosterbos CJ, Schönberger JP, Knape JT, van Zundert A. The use of autologous platelet-leukocyte gels to enhance the healing process in surgery, a review. Surg Endosc 2007; 21:2063-8. [PMID: 17436045 DOI: 10.1007/s00464-007-9293-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 11/27/2006] [Accepted: 12/22/2006] [Indexed: 12/31/2022]
Abstract
BACKGROUND The therapeutic use of autologously prepared, platelet-leukocyte-enriched gel (PLG) is a relatively new technology for the stimulation and acceleration of soft tissue and bone healing. The effectiveness of this procedure lies in the delivery of a wide range of platelet growth factors mimicking the physiologic wound healing and reparative tissue processes. Despite an increase in PLG applications, the structures and kinetics of this autogenously derived biologic material have not been observed. METHODS A review of the most recent literature was performed to evaluate the use of PLG in various surgical disciplines. RESULTS The review showed that the application of PLG has been extended to various surgical disciplines including orthopedics, cardiac surgery, plastic and maxillofacial surgery, and recently also endoscopic surgery. CONCLUSION This review demonstrates the usefulness of PLG in a wide range of clinical applications for improvement of healing after surgical procedures.
Collapse
Affiliation(s)
- P A Everts
- Department of Perioperative Blood Management, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|