1
|
Specific parameters of infrared LED irradiation promote the inhibition of oxidative stress in dental pulp cells. Arch Oral Biol 2021; 131:105273. [PMID: 34600332 DOI: 10.1016/j.archoralbio.2021.105273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The present study aimed to assess the oxidative stress and the viability of dental pulp cells stimulated by lipopolysaccharide (LPS) and submitted to photobiomodulation (PBM) with infrared light-emitting diode (LED, 850 nm). DESIGN Three healthy primary teeth (n = 3) were collected and seeded in 24-well plates with 10 µg/mL of LPS to induce inflammatory mediator formation. The cells were irradiated (850 nm, 40 mW/cm2 and 80 mW/cm2) at the proposed radiant exposures of 0 (control), 4, 15, and 30 J/cm2 shortly after LPS supplementation. The tests were performed 24 h after irradiation to assess mitochondrial activity (MTT assay), the number of viable cells (Trypan Blue), cell morphology (Scanning Electron Microscopy - SEM), and the quantification of Nitric Oxide (NO) and Reactive Oxygen Species (ROS). The data were analyzed using Kruskal-Wallis and Dunn's tests (p < 0.05). RESULTS The irradiated groups showed larger viable cells number than the non-irradiated group with LPS (p < 0.0001). All irradiation parameters decreased ROS concentrations after LPS application compared to the non-irradiated group (p < 0.05). All irradiation parameters enhanced the NO values compared to those of the control group (p < 0.05). The SEM images showed cells with regular morphology that adhered to the substrate. CONCLUSIONS According to the parameters used in this study, the radiant exposure of 15 J/cm2 and irradiance of 40 mW/cm2 were the most effective irradiation parameters to stimulate and modulate oxidative stress in the primary teeth-derived dental pulp cells.
Collapse
|
2
|
de Souza GL, Moura CCG, Silva ACA, Marinho JZ, Silva TR, Dantas NO, Bonvicini JFS, Turrioni AP. Effects of zinc oxide and calcium-doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models. Restor Dent Endod 2020; 45:e54. [PMID: 33294419 PMCID: PMC7691257 DOI: 10.5395/rde.2020.45.e54] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives This study aimed to synthesize nanocrystals (NCs) of zinc oxide (ZnO) and calcium ion (Ca2+)-doped ZnO with different percentages of calcium oxide (CaO), to evaluate cytotoxicity and to assess the effects of the most promising NCs on cytotoxicity depending on lipopolysaccharide (LPS) stimulation. Materials and Methods Nanomaterials were synthesized (ZnO and ZnO:xCa, x = 0.7; 1.0; 5.0; 9.0) and characterized using X-ray diffractometry, scanning electron microscopy, and methylene blue degradation. SAOS-2 and RAW 264.7 were treated with NCs, and evaluated for viability using the MTT assay. NCs with lower cytotoxicity were maintained in contact with LPS-stimulated (+LPS) and nonstimulated (−LPS) human dental pulp cells (hDPCs). Cell viability, nitric oxide (NO), and reactive oxygen species (ROS) production were evaluated. Cells kept in culture medium or LPS served as negative and positive controls, respectively. One-way analysis of variance and the Dunnett test (α = 0.05) were used for statistical testing. Results ZnO:0.7Ca and ZnO:1.0Ca at 10 µg/mL were not cytotoxic to SAOS-2 and RAW 264.7. +LPS and −LPS hDPCs treated with ZnO, ZnO:0.7Ca, and ZnO:1.0Ca presented similar NO production to negative control (p > 0.05) and lower production compared to positive control (p < 0.05). All NCs showed reduced ROS production compared with the positive control group both in +LPS and −LPS cells (p < 0.05). Conclusions NCs were successfully synthesized. ZnO, ZnO:0.7Ca and ZnO:1.0Ca presented the highest percentages of cell viability, decreased ROS and NO production in +LPS cells, and maintenance of NO production at basal levels.
Collapse
Affiliation(s)
- Gabriela Leite de Souza
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Anielle Christine Almeida Silva
- Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Thaynara Rodrigues Silva
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Noelio Oliveira Dantas
- Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Ana Paula Turrioni
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
3
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
4
|
Benetti F, Briso ALF, de Araújo Lopes JM, Carminatti M, Conti LC, Gallinari MO, Ervolino E, Cintra LTA. In vivo analysis of the presence of heme oxygenase-1, transcription factor Jun-D and CD90+/CD73+/CD105+/CD45- cells in the pulp of bleached teeth. Int Endod J 2019; 52:1723-1737. [PMID: 31322737 DOI: 10.1111/iej.13190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
AIM To investigate hydrogen peroxide (H2 O2 )-induced responsiveness in pulp cells using heme oxygenase-1 (HO-1) immunolabelling, Jun-D immunolabelling to study the effects of H2 O2 on odontoblastic differentiation and CD90+/CD73+/CD105+/CD45- cell counting for in vivo identification of mesenchymal stem cells in the pulp. METHODOLOGY The maxillary molars of 50 rats were treated with a bleaching gel (35% H2 O2 , 1 × 30 min) or placebo gel (control groups). At 2, 3, 7, 15 and 30 days after the treatment (n = 10), inflammation in pulp tissue was analysed by haematoxylin-eosin staining, HO-1- and Jun-D-immunolabelled cells were counted in each third of the pulp chamber, and the number of CD90+/CD73+/CD105+/CD45- cells was quantified by immunofluorescence. The results were assessed using the Paired t-test or Wilcoxon signed-rank test (P < 0.05). RESULTS Significant H2 O2 -induced inflammation was noted at 2 and 3 days (P < 0.05), with tertiary dentine formation occurring from 7 days. The bleached specimens had greater HO-1 immunolabelling in the middle and cervical thirds of the coronal pulp at 2 and 3 days, in all thirds at 7 days, and in the occlusal third at 15 days (P < 0.05), and significant nuclear Jun-D immunolabelling in the cervical third at 2 and 3 days and in the occlusal and middle thirds at 7 days (P < 0.05). Bleached and control groups had low numbers of CD90+/CD73+/CD105+/CD45- cells in the pulp at all periods (P > 0.05). CONCLUSIONS Pulp cells responded to oxidative stress by expressing HO-1 during the post-bleaching inflammation phase until the beginning of the repair phase. Jun-D expression occurred during the reduction of inflammation and the beginning of tertiary dentine production. The presence of oxidative stress did not influence the number of CD90+/CD73+/CD105+/CD45- cells identified in vivo in the dental pulp.
Collapse
Affiliation(s)
- F Benetti
- Department of Endodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil.,Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - A L F Briso
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - J M de Araújo Lopes
- Department of Endodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - M Carminatti
- Department of Endodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - L C Conti
- Department of Endodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - M O Gallinari
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - E Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - L T A Cintra
- Department of Endodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| |
Collapse
|
5
|
Shen YF, Huang TH, Ng HY, Fang HY, Hsu TT. Mineral Trioxide Aggregate Mixed with 5-Aminolevulinic Acid for the Photodynamic Antimicrobial Strategy in Hard Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1734. [PMID: 30223515 PMCID: PMC6163745 DOI: 10.3390/ma11091734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
Aminolevulinic acid (ALA) based photodynamic antimicrobial strategy can provide good antimicrobial effects and be used for medical applications. The aim of this study was to apply this strategy to Mineral Trioxide Aggregate (MTA), which is commonly used as a filling material for root endings and by doing so, to increase the bactericidal capability of MTA, as well as to investigate its characterization, cytocompatibility, and odontogenic differentiation potential. MTA is known to be a derivative of calcium silicate (CS). In this study, MTA specimens with or without ALA and light treatment were prepared. Diametral tensile strength values (DTS), setting durations, X-ray diffraction (XRD) spectra, apatite-mineralization, and antimicrobial abilities of the MTA, were also analyzed. Human dental pulp cells (hDPCs) can proliferate into the newly formed matrix and differentiate into odontoblasts to reinforce and strengthen the root. Levels of hDPCs proliferation and its odontogenic capabilities when cultured on MTA with ALA and light treatment, and the percentages of cells existing in the various cell cycle stages, were further evaluated in this study. The results indicated that MTA added ALA with light treatment had greater antibacterial ability and cytocompatibility, compared to MTA alone. A higher percentage S phase of the cells cultured on MTA added ALA with light treatment was observed. Furthermore, hDPCs cultured on MTA added ALA with light treatment had the highest expression levels of the odontoblastic differentiation markers. ALA has great antimicrobial efficiency and is a potential material for future medical applications. ALA-based photodynamic antibacterial strategy applied in the MTA has great antibacterial ability, cytocompatibility, and odontoblastic differentiation potential, and can facilitate the development of root canal treatment.
Collapse
Affiliation(s)
- Yu-Fang Shen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 40447, Taiwan.
- 3D Printing Medical Research Institute, Asia University, Taichung City 40447, Taiwan.
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung City 40447, Taiwan.
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 40447, Taiwan.
| | - Hooi-Yee Ng
- School of Medicine, China Medical University, Taichung City 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Hsin-Yuan Fang
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
- Department of Thoracic Surgery, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Tuan-Ti Hsu
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| |
Collapse
|
6
|
Song L, Li J, Yuan X, Liu W, Chen Z, Guo D, Yang F, Guo Q, Song H. Carbon monoxide-releasing molecule suppresses inflammatory and osteoclastogenic cytokines in nicotine- and lipopolysaccharide-stimulated human periodontal ligament cells via the heme oxygenase-1 pathway. Int J Mol Med 2017; 40:1591-1601. [DOI: 10.3892/ijmm.2017.3129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/05/2017] [Indexed: 11/06/2022] Open
|
7
|
The survival role of peroxisome proliferator-activated receptor gamma induces odontoblast differentiation against oxidative stress in human dental pulp cells. J Endod 2014; 39:236-41. [PMID: 23321237 DOI: 10.1016/j.joen.2012.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/24/2012] [Accepted: 11/06/2012] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Peroxisome proliferator-activated receptor gamma (PPARγ) has well-known anti-inflammatory action in human dental pulp cells (HDPCs). The purpose of this study was to investigate whether the anti-inflammatory action of PPARγ involves in cellular cytoprotection and supports odontoblast differentiation under oxidative stress in HDPCs. METHODS To simulate long-term oxidative stress, pulp cells were treated with 150 μmol hydrogen peroxide (H(2)O(2)) for 12 days. The replication deficiency adenovirus (adenovirus PPARγ) was introduced for PPARγ overexpression in pulp cells. The cellular cytotoxicity and reactive oxygen species formation by H(2)O(2) were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 2',7'-dichlorodihydrofluorescein diacetate with fluorescence-activated cell sorting assay. To determine the roles of PPARγ, several molecules of odontogenic/osteogenic and signal pathway were analyzed by reverse-transcription polymerase chain reaction and Western hybridization. Dentin mineralization was determined by alizarin red stain and alkaline phosphatase activity assay. RESULTS Pulp cells treated with long-term H(2)O(2) showed high reactive oxygen species formation, low cell viability, down-expression of antioxidant molecules (Cu/Zn and Mn superoxide dismutase), and odontogenic/osteogenic markers (eg, dentin sialophosphoprotein, dentin matrix protein-1, osteopontin, bone sialoprotein, Runx-2, and bone morphogenetic protein 2 and 7). In addition, pulp cells with oxidative stress underwent the activation of ERK1/2, activator protein-1, and nuclear factor-κB translocation to the nucleus. However, the PPARγ-overexpressed cells gave opposite results although under oxidative stress. Furthermore, PPARγ and its agonist rosiglitazone exhibited an induction of dentin mineralization under oxidative stress. CONCLUSIONS PPARγ in pulp cells increases cell viability, odontoblastic differentiation, and dentin mineralization under oxidative stress. These results offer new insights into the potential antioxidative activity of PPARγ and its agonist for therapeutic agents for pulp vitality in HDPCs.
Collapse
|
8
|
Montoro LA, Turrioni APS, Basso FG, de Souza Costa CA, Hebling J. Infrared LED irradiation photobiomodulation of oxidative stress in human dental pulp cells. Int Endod J 2013; 47:747-55. [PMID: 24215116 DOI: 10.1111/iej.12211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/07/2013] [Indexed: 01/29/2023]
Abstract
AIM To investigate the effect of infrared light-emitting diode (LED) irradiation on the oxidative stress induced in human dental pulp cells (HDPCs) by lipopolysaccharide (LPS). METHODOLOGY Human dental pulp cells (HDPCs) were harvested from sound primary teeth that were near exfoliation. Cells were seeded (10(5) cells cm(-2) ) using α-MEM supplemented with 10% FBS and after 24 h, were placed in contact with LPS (10 μg mL(-1) of culture medium). Immediately afterwards, HDPCs were subjected to a single irradiation with an infrared LED (855 nm) delivering different doses of energy (0, 2, 4, 8, 15 or 30 J cm(-2) ). For each dose, there was a control group without LPS application. Twenty-four hours after irradiation, groups were tested for nitric oxide (NO) quantification, cell viability (MTT assay) and qualitative assessment of reactive oxygen species (ROS). Data were submitted to Kruskal-Wallis and Mann-Whitney tests (α = 0.05). RESULTS Lipopolysaccharide (LPS)-induced stress resulted in significant increase in NO production by HDPC without causing damage to cell respiratory metabolism. Irrespective of energy dose delivered, NO production was significantly reduced when LPS-stressed cells were irradiated with infrared LED (2 J cm(-2) , P = 0.003; 95% CI = 5.84-27.71; 4 J cm(-2) , P = 0.001; 95% CI = 7.52-26.39; 8 J cm(-2) , P = 0.0195; 95% CI = -2.86-16.01; 15 J cm(-2) , P = 0.0001; 95% CI = 12.10-30.96; 30 J cm(-2) , P = 0.007; 95% CI = 5.84-24.71). The highest decrease in NO production was observed when 15 J cm(-2) was delivered to cells. Infrared LED irradiation resulted in a decrease in ROS production, whilst HDPC metabolism was not significantly affected. CONCLUSION Biomodulation of oxidative stress of HPDC can be achieved by irradiation with a single dose of infrared LED. Within the range investigated, 15 J cm(-2) resulted in the least production of NO.
Collapse
Affiliation(s)
- L A Montoro
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
9
|
Karube H, Inamura H, Matsuoka M. Zinc chloride exposure increases heme oxygenase-1 expression in MDPC-23 odontoblast-like cells. Arch Oral Biol 2013; 58:355-61. [DOI: 10.1016/j.archoralbio.2012.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/07/2012] [Accepted: 09/05/2012] [Indexed: 01/20/2023]
|
10
|
Butein protects human dental pulp cells from hydrogen peroxide-induced oxidative toxicity via Nrf2 pathway-dependent heme oxygenase-1 expressions. Toxicol In Vitro 2013; 27:874-81. [PMID: 23318726 DOI: 10.1016/j.tiv.2013.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 12/10/2012] [Accepted: 01/03/2013] [Indexed: 01/03/2023]
Abstract
Rhus verniciflua Stokes is a plant that is native to East Asian countries, such as Korea, China, and Japan. Butein, a plant polyphenol, is one of the major active components of R. verniciflua. Reactive oxygen species (ROS), produced via dental adhesive bleaching agents and pulpal disease, can cause oxidative stress. Here, we found that butein possesses cytoprotective effects on hydrogen peroxide (H2O2)-induced dental cell death. H2O2 is a representative ROS and causes cell death through necrosis in human dental pulp (HDP) cells. H2O2-induced cytotoxicity and production of ROS were blocked in the presence of butein, and these effects were dose dependent. Butein also increased heme oxygenase-1 (HO-1) protein expression and HO activity. In addition, butein-dependent HO-1 expression was required for the inhibition of H2O2-induced cell death and ROS generation. Furthermore, butein treatment caused nuclear accumulation of nuclear factor-E2-related factor 2 (Nrf2) and increased the promoter activity of antioxidant response elements (AREs). Treatment of HDP cells with a c-Jun NH2-terminal kinase (JNK) inhibitor also reduced butein-induced HO-1 expression, and butein treatment led to increased JNK phosphorylation. These results indicate that butein may be used to prevent functional dental cell death and thus may be useful as a pulpal disease agent.
Collapse
|
11
|
Pi SH, Jeong GS, Oh HW, Kim YS, Pae HO, Chung HT, Lee SK, Kim EC. Heme oxygenase-1 mediates nicotine- and lipopolysaccharide-induced expression of cyclooxygenase-2 and inducible nitric oxide synthase in human periodontal ligament cells. J Periodontal Res 2010; 45:177-83. [PMID: 20470258 DOI: 10.1111/j.1600-0765.2009.01215.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Although heme oxygenase-1 (HO-1) plays a key role in inflammation, its anti-inflammatory effects and mechanism of action in periodontitis are still unknown. This study aimed to identify the effects of HO-1 on the proinflammatory mediators activated by nicotine and lipopolysaccharide (LPS) stimulation in human periodontal ligament (PDL) cells. MATERIAL AND METHODS The production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) was evaluated using Griess reagent and an enzyme immunoassay, respectively. The expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and HO-1 proteins was evaluated by Western blot analysis. RESULTS Lipopolysaccharide and nicotine synergistically induced the production of NO and PGE(2) and increased the protein expression of iNOS, COX-2 and HO-1. Treatment with an HO-1 inhibitor and HO-1 small interfering RNAs blocked the LPS- and nicotine-stimulated NO and PGE(2) release as well as the expression of iNOS and COX-2. CONCLUSION Our data suggest that the nicotine- and LPS-induced inflammatory effects on PDL cells may act through a novel mechanism involving the action of HO-1. Thus, HO-1 may provide a potential therapeutic target for the treatment of periodontal disease associated with smoking and dental plaque.
Collapse
Affiliation(s)
- S-H Pi
- Department of Periodontology, Wonkwang University, Iksan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim SJ, Min KS, Ryu HW, Lee HJ, Kim EC. The Role of Heme Oxygenase-1 in the Proliferation and Odontoblastic Differentiation of Human Dental Pulp Cells. J Endod 2010; 36:1326-31. [DOI: 10.1016/j.joen.2010.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/12/2010] [Accepted: 04/29/2010] [Indexed: 01/09/2023]
|
13
|
Cho JH, Lee SK, Lee JW, Kim EC. The role of heme oxygenase-1 in mechanical stress- and lipopolysaccharide-induced osteogenic differentiation in human periodontal ligament cells. Angle Orthod 2010; 80:552-9. [DOI: 10.2319/091509-520.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Lee HJ, Jeong GS, Pi SH, Lee SI, Bae WJ, Kim SJ, Lee SK, Kim EC. Heme oxygenase-1 protects human periodontal ligament cells against substance P-induced RANKL expression. J Periodontal Res 2010; 45:367-74. [PMID: 20337895 DOI: 10.1111/j.1600-0765.2009.01247.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Although substance P (SP) stimulates bone resorption activity and this is reported to be correlated with the degree of periodontal inflammation, it is unclear how human periodontal ligament cells regulate neuropeptide-induced osteoclastogenesis or the possible involvement of heme oxygenase-1 (HO-1) might be. This study examines how SP affects osteoprotegerin (OPG) and RANKL expression via HO-1. MATERIAL AND METHODS Using immortalized human periodontal ligament cells, the effects of SP on the expression of HO-1, RANKL and OPG mRNA and proteins were determined by RT-PCR and western blotting, respectively. Various concentrations of SP (10(-7), 10(-8), 10(-9) and 10(-10) m) were added to the medium, and the cells were treated for 0, 0.25, 0.5, 1, 2 and 3 d. RESULTS Substance P upregulated RANKL and HO-1 and downregulated OPG mRNA and protein expression in periodontal ligament cells, in a concentration- and time-dependent manner. A HO-1 inducer inhibited both the upregulation of RANKL expression and downregulation of OPG expression by SP in periodontal ligament cells. By contrast, treatment with a HO-1 inhibitor or HO-1 small interferring RNA (siRNA) enhanced SP-stimulated RANKL expression. Inhibitors of ERK and p38 MAP kinases, phosphoinositide 3-kinase and nuclear factor-kappaB blocked the effects of SP on RANKL expression in periodontal ligament cells. CONCLUSION These results suggest that SP stimulates osteoclastic differentiation by increasing the expression of RANKL vs. OPG via the HO-1 pathway in periodontal ligament cells. The HO-1 pathway may be an effective therapeutic target for inhibiting chronic periodontitis involving alveolar bone resorption.
Collapse
Affiliation(s)
- H-J Lee
- Department of Oral and Maxillofacial Pathology, Wonkwang University, Iksan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim YS, Pi SH, Lee YM, Lee SI, Kim EC. The anti-inflammatory role of heme oxygenase-1 in lipopolysaccharide and cytokine-stimulated inducible nitric oxide synthase and nitric oxide production in human periodontal ligament cells. J Periodontol 2010; 80:2045-55. [PMID: 19961388 DOI: 10.1902/jop.2009.090145] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although heme oxygenase-1 (HO-1) is involved in anti-inflammation, the mechanisms of its activity in regulating periodontal inflammation are largely unclear. Therefore, the aim of this study is to investigate the anti-inflammatory properties of HO-1 in lipopolysaccharide (LPS)- and proinflammatory cytokine-stimulated inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in human periodontal ligament (PDL) cells. METHODS PDL cells were treated with LPS plus a combination of tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta in serum-free media for 1 day. The production of NO was evaluated using a Griess reagent kit. The expression of iNOS and HO-1 proteins and mRNAs was evaluated using Western blotting and reverse transcriptase-polymerase chain reaction, respectively. RESULTS Proinflammatory cytokines and LPS triggered iNOS and HO-1 expression and NO production in PDL cells. HO-1 inhibitor and HO-1 small interfering RNA (siRNA) attenuated the LPS- and cytokine-stimulated NO release and iNOS and HO-1 expression. Specific inhibitors of p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases phosphatidylinositol 3-kinase (PI3K), nuclear factor-kappa B (NF-kappaB), and protein kinase C delta (PKC-delta) greatly reduced the levels of iNOS and HO-1 expression induced by LPS plus cytokines. CONCLUSIONS Collectively, these data suggested that HO-1 inhibition blocked LPS- and proinflammatory cytokine-stimulated iNOS expression and NO production in PDL cells via a mechanism that involves p38, ERK, PI3K, NF-kappaB, and PKC-delta. Thus, the regulation of HO-1 activity may be a therapeutic strategy for periodontal disease.
Collapse
Affiliation(s)
- Young-Suk Kim
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, South Korea
| | | | | | | | | |
Collapse
|
16
|
Lee SK, Lee CY, Kook YA, Lee SK, Kim EC. Mechanical stress promotes odontoblastic differentiation via the heme oxygenase-1 pathway in human dental pulp cell line. Life Sci 2009; 86:107-14. [PMID: 19951713 DOI: 10.1016/j.lfs.2009.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/11/2009] [Accepted: 11/18/2009] [Indexed: 01/09/2023]
Abstract
AIMS Although heme oxygenase-1 (HO-1) is involved in osteoblastic differentiation, the HO-1- and odontoblastic differentiation-inducing effects of mechanical stress (MS) have not been clarified in human dental pulp cells (HDPCs). In this study, we examined the effects of MS on the odontoblastic differentiation of immortalized HDPCs and on the primary intracellular signaling pathways, including the HO-1 pathway, implicated in this differentiation. MAIN METHODS A Flexercell strain unit was used to generate cyclic tensile strain in HDPCs. Expressions of mRNAs encoding HO-1 and HDPC differentiation markers, such as osteopontin (OPN), bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP), and dentin matrix-protein-1 (DMP-1), were evaluated using the reverse transcription-polymerase chain reaction. Expression of the NF-E2-related transcription factor 2 (Nrf2) protein was analyzed by Western blotting. KEY FINDINGS MS significantly increased the expression of HO-1, OPN, BSP, DSPP, and DMP-1 mRNAs in HDPCs. HO-1 silencing and inhibitors of HO-1, p38 MAPK, ERK, phosphoinositide 3-kinase, and nuclear factor-kappaB (NF-kappaB) all attenuated MS-stimulated differentiation. The MS-induced nuclear translocation of Nrf2 was suppressed by inhibitors of PI3K and NF-kappaB. SIGNIFICANCE Collectively, these results provide the first evidence that MS stimulates odontoblastic differentiation of HDPCs via modulation of the Nrf2-mediated HO-1 pathway.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, South Korea
| | | | | | | | | |
Collapse
|
17
|
Chang SW, Lee SI, Bae WJ, Min KS, Shin ES, Oh GS, Pae HO, Kim EC. Heat stress activates interleukin-8 and the antioxidant system via Nrf2 pathways in human dental pulp cells. J Endod 2009; 35:1222-8. [PMID: 19720220 DOI: 10.1016/j.joen.2009.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION This study tested whether heat stress (42 degrees C for 30 minutes) induces reactive oxygen species (ROS), proinflammatory cytokines, Nrf2 activation, and Nrf2 target genes such as antioxidant enzymes in human dental pulp (HDP) cells. METHODS ROS was evaluated by using flow cytometry. Proteins and messenger RNA levels for cytokines and antioxidant genes were determined by using Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis, respectively. RESULTS Heat stress induced the production of ROS and the increased expression of the interleukin (IL)-8 and IL-8 receptor genes. Exposure of cells to heat stress resulted in the nuclear translocation of Nrf2 and increased expression of Nrf2 target genes including heme oxygenase-1. Pretreatment with an exogenous antioxidant inhibited the heat-induced expression of IL-8 and Nrf2 target genes and Nrf2 translocation. CONCLUSION Collectively, these results show that heat-induced Nrf2 activation is the major regulatory pathway of cytoprotective gene expression against oxidative stress in HDP cells.
Collapse
Affiliation(s)
- Seok-Woo Chang
- Department of Conservative Dentistry, The Institute of Oral Health Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Jeong GS, Lee SH, Jeong SN, Kim YC, Kim EC. Anti-inflammatory effects of apigenin on nicotine- and lipopolysaccharide-stimulated human periodontal ligament cells via heme oxygenase-1. Int Immunopharmacol 2009; 9:1374-80. [PMID: 19729077 DOI: 10.1016/j.intimp.2009.08.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Although apigenin exhibits various biological effects, its anti-inflammatory role in the periodontal field remains unknown. We examined the anti-inflammatory effects of apigenin and the underlying mechanism in nicotine- and lipopolysaccharide (LPS)-stimulated human periodontal ligament (hPDL) cells. MATERIALS AND METHODS Western blotting was used to examine the effect of apigenin (10-40 microM) on the LPS- and nicotine-induced expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and heme oxygenase-1 (HO-1), as well as the phosphorylation of mitogen-activated protein kinases (MAPKs), in hPDL cells. Pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), IL-6, and IL-12 were monitored using Griess reagents and ELISA. RESULTS Incubation of hPDL cells with apigenin decreased LPS- and nicotine-induced HO-1 protein expression and activity. Apigenin significantly inhibited the nicotine- and LPS-induced production of NO, PGE2, IL-1beta, TNF-alpha, IL-6, and IL-12, and the upregulation of iNOS and COX-2 in hPDL cells. Hemin, a selective HO-1 inducer, reversed the apigenin-mediated suppression of nicotine- and LPS-induced NO, PGE2 and cytokine production. Treatment with inhibitors of the phosphoinositide 3-kinase, MAPKs, p38, and JNK, as well as a protein kinase C inhibitor, blocked the anti-inflammatory effects of apigenin in nicotine- and LPS-treated cells. CONCLUSIONS Apigenin possesses anti-inflammatory activity in hPDL cells and works through a novel mechanism involving the action of HO-1. Thus, apigenin may have potential benefits as a host modulatory agent in the prevention and treatment of periodontal disease associated with smoking and dental plaque.
Collapse
Affiliation(s)
- Gil-Saeng Jeong
- Zoonosis Research Center, Wonkwang University, Iksan, South Korea
| | | | | | | | | |
Collapse
|
19
|
Lee SK, Choi HI, Yang YS, Jeong GS, Hwang JH, Lee SI, Kang KH, Cho JH, Chae JM, Lee SK, Kim YC, Kim EC. Nitric Oxide Modulates Osteoblastic Differentiation with Heme Oxygenase-1 via the Mitogen Activated Protein Kinase and Nuclear Factor-kappaB Pathways in Human Periodontal Ligament Cells. Biol Pharm Bull 2009; 32:1328-34. [DOI: 10.1248/bpb.32.1328] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sun-Kyung Lee
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang University
| | - Hee-In Choi
- Department of Orthodontics, College of Dentistry, Wonkwang University
| | - Yun-Seok Yang
- Department of Obstetrics and Gynecology, College of Medicine, Eulgi University
| | | | - Joo-Hee Hwang
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang University
| | - Sang-Im Lee
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang University
| | - Kyung-Hwa Kang
- Department of Orthodontics, College of Dentistry, Wonkwang University
| | - Jin-Hyung Cho
- Department of Orthodontics, College of Dentistry, Wonkwang University
| | - Jong-Moon Chae
- Department of Orthodontics, College of Dentistry, Wonkwang University
| | - Suk-Keun Lee
- Department of Oral Pathology, College of Dentistry, Kangnung National University
| | | | - Eun-Cheol Kim
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang University
| |
Collapse
|
20
|
Lee SK, Min KS, Kim Y, Jeong GS, Lee SH, Lee HJ, Lee SI, Kim YS, Lee YM, Park SJ, Seo SW, Lee SK, Kim EC. Mechanical stress activates proinflammatory cytokines and antioxidant defense enzymes in human dental pulp cells. J Endod 2008; 34:1364-1369. [PMID: 18928848 DOI: 10.1016/j.joen.2008.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/13/2008] [Accepted: 08/17/2008] [Indexed: 10/21/2022]
Abstract
This study was conducted to investigate the effects of mechanical stress, particularly cyclic strain, on proinflammatory cytokines as well as antioxidant properties and their interactions with cellular defense systems in human dental pulp (HDP) cells. Exposure of HDP cells to mechanical strain induced inflammatory cytokines such as interleukin-1 beta, tumor necrosis factor-alpha, and interleukin-6, as well as antioxidant genes such as heme oxygenase-1, superoxide dismutases, reduced nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1, and glutathione peroxidases. In addition, treatment with N-acetylcysteine, indomethacin, and heme oxygenase-1 inhibitors blocked reactive oxygen species production, antioxidant response element (ARE) gene expression, and Nrf2 accumulation that occurred in response to mechanical stress. These data demonstrate that mechanical strain activates inflammatory cytokines and oxidative stress, which then act in concert to induce the Nrf2-/ARE-mediated antioxidant enzymes. Therefore, we suggest that the activation of a compensatory adaptation or defense antioxidant system might represent a novel mechanism for protecting HDP cells against mechanical stress.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea; Sun-Kyung Lee and Kyung-San Min contributed equally to this work
| | - Kyung-San Min
- Department of Conservative Dentistry, College of Dentistry, Wonkwang University, Iksan, Republic of Korea; Sun-Kyung Lee and Kyung-San Min contributed equally to this work
| | - Youngho- Kim
- Department of Biochemistry, College of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Gil-Saeng Jeong
- Institute for Radiological Imaging Science, College of Oriental Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Seung-Hoon Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Hwa-Jeong Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Sang-Im Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Young-Suk Kim
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Young-Man Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Sung-Joo Park
- Department of Herbology, College of Oriental Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Sang-Wan Seo
- Department of Herbology, College of Oriental Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Suk-Keun Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Kangnung National University, Kangnung, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
21
|
Lee J, Lim HD, Lee YM, Lee W, Kim MK, Lee SK, Jeong GS, Oh HW, Lee SK, Kim EC. Expression of heme oxygenase-1 in oral lichen planus. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1755-9294.2008.00029.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Min KS, Lee HJ, Kim SH, Lee SK, Kim HR, Pae HO, Chung HT, Shin HI, Lee SK, Kim EC. Hydrogen Peroxide Induces Heme Oxygenase–1 and Dentin Sialophosphoprotein mRNA in Human Pulp Cells. J Endod 2008; 34:983-9. [DOI: 10.1016/j.joen.2008.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/15/2008] [Accepted: 05/22/2008] [Indexed: 11/24/2022]
|
23
|
Min KS, Kim H, Chang HS, Kim HR, Pae HO, Chung HT, Hong SH, Shin HI, Hong CU, Lee SK, Kim EC. Involvement of mitogen-activated protein kinases and nuclear factor-kappa B activation in nitric oxide–induced interleukin-8 expression in human pulp cells. ACTA ACUST UNITED AC 2008; 105:654-60. [DOI: 10.1016/j.tripleo.2007.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/23/2007] [Accepted: 11/13/2007] [Indexed: 11/24/2022]
|
24
|
Lee HJ, Lee J, Min SK, Guo HY, Lee SK, Kim HR, Pae HO, Chung HT, Hong SH, Lee SK, Kim EC. Differential induction of heme oxygenase-1 against nicotine-induced cytotoxicity via the PI3K, MAPK, and NF-kappa B pathways in immortalized and malignant human oral keratinocytes. J Oral Pathol Med 2008; 37:278-86. [PMID: 18205746 DOI: 10.1111/j.1600-0714.2007.00616.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) exhibits cytoprotective effects in many different cell types and is induced by nicotine exposure in human gingival fibroblasts. However, the role of HO-1 in cancer cells exposed to nicotine has not previously been described. METHODS We investigated the effects of nicotine on HO-1 protein expression and cell viability in immortalized (IHOK) and malignant (HN12) human oral keratinocyte cells using the 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay and Western blotting. We also examined the involvement of the phosphoinositide-3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and nuclear factor-kappaB (NF-kappaB) signaling pathways in nicotine-induced cytotoxicity and HO-1 levels in IHOK and HN12 cells. RESULTS Nicotine-induced HO-1 production and had cytotoxic effects on cells in both a concentration- and time-dependent manner. Nicotine-induced cytotoxicity and accumulation of HO-1 were greater in IHOK cells than in HN12 cells. Molecular inhibitors of the ERK, p38 MAP kinase, PI3 K, and NF-kappaB signaling pathways blocked the cytotoxic effects and induction of HO-1 expression by nicotine. Treatment with antioxidants (bilirubin, N-acetylcysteine) protected cells against nicotine-induced cytotoxicity and blocked the upregulation of HO-1, the effects of which were more pronounced in IHOK cells than in HN12 cells. CONCLUSIONS Collectively, these results suggest that HO-1 plays a principal role in the protective response to nicotine in oral cancer and immortalized keratinocytes. Moreover, the addition of exogenous antioxidants may help to protect oral epithelial cells as chemopreventive agents against nicotine-induced oxidative stress.
Collapse
Affiliation(s)
- Hwa-Jeong Lee
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Min KS, Chang HS, Bae JM, Park SH, Hong CU, Kim EC. The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells. J Endod 2008; 33:1342-6. [PMID: 17963960 DOI: 10.1016/j.joen.2007.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 06/15/2007] [Accepted: 07/01/2007] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the cytotoxic and nitric oxide (NO)-inducing effects of bismuth oxide (Bi(2)O(3))-containing Portland cement (BPC) on human dental pulp cells. We also assessed whether heme oxygenase-1 (HO-1) is involved in BPC-induced cytotoxicity in dental pulp cells. Cytotoxicity and NO production induced by BPC were higher than those induced by Portland cement at 12 and 24 hours, and the former gradually decreased to the level observed for PC. HO-1 and inducible nitric oxide synthase messenger RNA expressions in the BPC group showed maximal increase at 24 hours, and it gradually decreased with increasing cultivation time. Hemin treatment reversed the BPC-induced cytotoxicity, whereas zinc protoporphyrin IX treatment increased the cytotoxicity. These results suggested that NO production by BPC correlates with HO-1 expression in dental pulp cells. Moreover, BPC-induced HO-1 expression in dental pulp cells plays a protective role against the cytotoxic effects of BPC.
Collapse
Affiliation(s)
- Kyung-San Min
- Department of Conservative Dentistry, College of Dentistry, Wonkwang University, Iksan, South Korea
| | | | | | | | | | | |
Collapse
|
26
|
Lee SK, Pi SH, Kim SH, Min KS, Lee HJ, Chang HS, Kang KH, Kim HR, Shin HI, Lee SK, Kim EC. Substance P regulates macrophage inflammatory protein 3alpha/chemokine C-C ligand 20 (CCL20) with heme oxygenase-1 in human periodontal ligament cells. Clin Exp Immunol 2007; 150:567-75. [PMID: 17924972 DOI: 10.1111/j.1365-2249.2007.03514.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although substance P (SP), a potent proinflammatory peptide, is involved in inflammation and immune responses, the effect of SP on the expression of macrophage inflammatory protein 3alpha[MIP-3alpha, chemokine C-C ligand 20 (CCL20)] in periodontal ligament (PDL) cells is unknown. Equally enigmatic is the link between SP, the stress protein heme oxygenase-1 (HO-1), and CCL20 production. We investigated whether SP induces the release of chemokine CCL20 from immortalized PDL (IPDL) cells, and further clarify SP-mediated pathways. We also examined the relationship between HO-1 and CCL20 by treating PDL cells with SP. Incubating IPDL cells with SP increased expression of CCL20 mRNA and CCL20 protein in a dose-time-dependent manner. Highly selective p38 and extracellular-regulated kinase 1/2 (ERK1/2) inhibitors abrogated SP-induced expression of CCL20 in IPDL cells. SP is also responsible for initiating phosphorylation of IkappaB, degradation of IkappaB and activation of nuclear factor (NF)-kappaB. SP induced expression of HO-1 in both a concentration- and time-dependent manner, and CCL20 reflected similar patterns. The inductive effects of SP on HO-1 and CCL20 were enhanced by HO-1 inducer hemin and the membrane-permeable guanosine 3',5'-monophosphate (cGMP) analogue 8-bromo-cGMP. Conversely, this pathway was inhibited by the HO-1 inhibitor zinc protoporphyrin IX (ZnPP IX) and the selective inhibitor of guanylate cyclase, 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one (ODQ). We report herein the pathway that connects SP along with other modulators of neuroimmunoregulation to the induction of HO-1 and the inflammatory mediator macrophage inflammatory protein (MIP)-3alpha/CCL20 in IPDL cells, which play an important role in the development of periodontitis or inflammation during orthodontic tooth movement.
Collapse
Affiliation(s)
- S-K Lee
- Department of Oral and Maxillofacial Pathology, Dental College, Wonkwang University, Iksan, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Nitric oxide (NO) has emerged as a major modulator of cellular function in health and disease. In addition to its well-known role as a mediator of smooth muscle relaxation, a rapidly developing body of research suggests, paradoxically, that NO can have both cytotoxic and cytoprotective effects. In this issue of Neurogastroenterology and Motility, Choi et al. provide evidence that supports NO has a prosurvival effect on interstitial cells of Cajal in the mouse stomach. The objective of this short review is to place this interesting report in the context of the current literature.
Collapse
Affiliation(s)
- J W Wiley
- Department of Internal Medicine and General Clinical Research Center, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|