1
|
Bose A, Baral R. COVID-19 imparted immune manifestation can be combated by NLGP: Lessons from cancer research. Cytokine 2022; 158:155980. [PMID: 35921791 PMCID: PMC9339246 DOI: 10.1016/j.cyto.2022.155980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 easily infects human monocytes, macrophages and possibly dendritic cells (DCs), causing dysfunctions of these important antigen presenting cells (APCs). Observed DC dysfunctions facilitate improper antigen presentation, which obviously results T cell anergy, exhaustion and apoptosis, thus, may be contributing significantly in SARS-CoV-2 infection associated lymphopenia. Neem Leaf Glycoprotein or NLGP has enormous role in altered DC functions, thereby, offering optimum T cell mediated cytotoxicity, as experienced from cancer system. Such NLGP guided correction of altered DCs might also be effective to generate proper SARS-CoV-2-specific effector and central memory T cells.
Collapse
Affiliation(s)
- Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
2
|
Ranaweera BVLR, Edward D, Abeysekera AM, Weerasena OVDSJ, Handunnetti SM. Increased expression of co-stimulatory molecules and enhancement of the IgG response in rats orally administered with a polyherbal formulation. J Ayurveda Integr Med 2022; 13:100528. [PMID: 35063357 PMCID: PMC8814394 DOI: 10.1016/j.jaim.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
Background Link Samahan® (LS) is a standardized modern formulation of a polyherbal preparation used in the indigenous system of medicine in Sri Lanka. Objective Evaluation of the immunostimulatory activity of LS and the molecular mechanisms that modulate the humoral immune response. Material and methods Immunostimulatory activity of LS was tested in rats following oral administration on days 1-5 and 15-19 and immunization with bovine serum albumin (BSA) on day 1 and 15. Anti-BSA IgM and IgG response in rats treated with LS, water and sugar (as controls) were compared on days 0-35, using ELISA. The expression of co-stimulatory molecules on lymphocytes was assessed on days 0-8 and days 14-22 using RT-qPCR. Results IgM and IgG levels of LS-treated rats were increased significantly by day 7 and 21 respectively compared to controls (p < 0.05). IgG response of LS-treated group reached a higher magnitude compared to its IgM response. Gene expression of CD28 and CD40L on T cells (4.9-5.1 fold) and CD80, CD86 and CD40 on APCs (2.4-3.1 fold) were induced significantly by day 2 compared to their expression on day 0 (p < 0.05). The expression levels of CD28 and CD40L on day 2-4 and 16-18 were similar while the expression of CD80, CD86 and CD40 on day 16-18 was higher (3.7-5.1 folds) compared to their levels on day 2-4 (2.4-3.2). Conclusions These findings support an adjuvant effect of LS contributing to its immunostimulatory activity and increased expression of co-stimulatory molecules that contribute to boosting immune response.
Collapse
Affiliation(s)
| | - Daniya Edward
- Institute of Biochemistry, Molecular Biology and Biotechnology (IBMBB), University of Colombo, Sri Lanka.
| | | | | | | |
Collapse
|
3
|
Sarkar S, Singh RP, Bhattacharya G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: an update on molecular approach. 3 Biotech 2021; 11:178. [PMID: 33927969 PMCID: PMC7981372 DOI: 10.1007/s13205-021-02745-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/13/2021] [Indexed: 01/26/2023] Open
Abstract
In ethnomedicine, plant parts and compounds are used traditionally to treat different diseases. Neem (Azadirachta indica A. Juss) is the most versatile and useful medicinal plant ever found. Its every part is rich in bioactive compounds, which have traditionally been used to treat different ailments including infectious diseases. Bioactive compounds such as nimbolide, azarirachtin, and gedunin of neem are reported to have a tremendous ability to regulate numerous biological processes in vitro and in vivo. The present review article aims to explore the importance of neem extracts and bioactive compounds in the regulation of different biological pathways. We have reviewed research articles up to March 2020 on the role of neem in antioxidant, anti-inflammatory, antiangiogenic, immunomodulatory, and apoptotic activities. Studies on the concerned fields demonstrate that the bioactive compounds and extracts of neem have a regulatory effect on several biological mechanisms. It has been unveiled that extensive research is carried out on limonoids such as nimbolide and azarirachtin. It is evidenced by different studies that neem extracts are the potential to scavenge free radicals and reduce ROS-mediated damage to cells. Neem can be used to normalize lipid peroxidation and minimize ROS-mediated cell death. Besides, neem extracts can significantly reduce the release of proinflammatory cytokines and elevate the count of CD4 + and CD8 + T-cells. This review indicates the pivotal roles of A. indica in the regulation of different biological pathways. However, future investigations on other bioactive compounds of neem may reveal different therapeutic potentials.
Collapse
Affiliation(s)
- Subendu Sarkar
- Department of Surgery, University School of Medicine, Indiana University, Indianapolis, IN 46202 USA
| | - Rajender Pal Singh
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Gorachand Bhattacharya
- Jagannath Gupta Institute of Medical Sciences & Hospital, KP Mondal Road, Buita, Nishchintapur, Budge Budge, Kolkata 700137 India
| |
Collapse
|
4
|
Bhuniya A, Guha I, Ganguly N, Saha A, Dasgupta S, Nandi P, Das A, Ghosh S, Ghosh T, Haque E, Banerjee S, Bose A, Baral R. NLGP Attenuates Murine Melanoma and Carcinoma Metastasis by Modulating Cytotoxic CD8 + T Cells. Front Oncol 2020; 10:201. [PMID: 32211313 PMCID: PMC7076076 DOI: 10.3389/fonc.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neem leaf glycoprotein (NLGP), a natural immunomodulator, attenuates murine carcinoma and melanoma metastasis, independent of primary tumor growth and alterations in basic cellular properties (cell proliferation, cytokine secretion, etc.). Colonization event of invasion–metastasis cascade was primarily inhibited by NLGP, with no effect on metastasis-related invasion, migration, and extravasation. High infiltration of interferon γ (IFN-γ)–secreting cytotoxic CD8+ T cells [CD44+, CD69+, GranB+, IFN-γ+, and interleukin 2+] was documented in the metastatic site of NLGP-treated mice. Systemic CD8+ T cell depletion abolished NLGP-mediated metastasis inhibition and reappeared upon adoptive transfer of NLGP-activated CD8+ T cells. Interferon γ-secreting from CD8+ T cells inhibit the expression of angiogenesis regulatory vascular endothelial growth factor and transforming growth factor β and have an impact on the prevention of colonization. Neem leaf glycoprotein modulates dendritic cells (DCs) for proper antigen presentation by its DC surface binding and upregulation of MHC-I/II, CD86, and CCR7. Neem leaf glycoprotein–treated DCs specifically imprint CXCR3 and CCR4 homing receptors on activated CD8+ T cells, which helps to infiltrate into metastatic sites to restrain colonization. Such NLGP's effect on DCs is translation dependent and transcription independent. Studies using ovalbumin, OVA257−264, and crude B16F10 antigen indicate MHC-I upregulation depends on the quantity of proteasome degradable peptide and only stimulates CD8+ T cells in the presence of antigen. Overall data suggest NLGP inhibits metastasis, in conjunction with tumor growth restriction, and thus might appear as a promising next-generation cancer immunotherapeutic.
Collapse
Affiliation(s)
- Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Arnab Das
- RNA Biology and Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Enamul Haque
- Department of Zoology, Barasat Government College, Barasat, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
5
|
Ghosh T, Nandi P, Ganguly N, Guha I, Bhuniya A, Ghosh S, Sarkar A, Saha A, Dasgupta S, Baral R, Bose A. NLGP counterbalances the immunosuppressive effect of tumor-associated mesenchymal stem cells to restore effector T cell functions. Stem Cell Res Ther 2019; 10:296. [PMID: 31547863 PMCID: PMC6757425 DOI: 10.1186/s13287-019-1349-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background A dynamic interaction between tumor cells and its surrounding stroma promotes the initiation, progression, metastasis, and chemoresistance of solid tumors. Emerging evidences suggest that targeting the stromal events could improve the efficacies of current therapeutics. Within tumor microenvironment (TME), stromal progenitor cells, i.e., MSCs, interact and eventually modulate the biology and functions of cancer and immune cells. Our recent finding disclosed a novel mechanism stating that tumor-associated MSCs inhibit the T cell proliferation and effector functions by blocking cysteine transport to T cells by dendritic cells (DCs), which makes MSCs as a compelling candidate as a therapeutic target. Immunomodulation by nontoxic neem leaf glycoprotein (NLGP) on dysfunctional cancer immunity offers significant therapeutic benefits to murine tumor host; however, its modulation on MSCs and its impact on T cell functions need to be elucidated. Methods Bone marrow-derived primary MSCs or murine 10 T1/2 MSCs were tumor-conditioned (TC-MSCs) and co-cultured with B16 melanoma antigen-specific DCs and MACS purified CD4+ and CD8+ T cells. T cell proliferation of T cells was checked by Ki67-based flow-cytometric and thymidine-incorporation assays. Cytokine secretion was measured by ELISA. The expression of cystathionase in DCs was assessed by RT-PCR. The STAT3/pSTAT3 levels in DCs were assessed by western blot, and STAT3 function was confirmed using specific SiRNA. Solid B16 melanoma tumor growth was monitored following adoptive transfer of conditioned CD8+ T cells. Results NLGP possesses an ability to restore anti-tumor T cell functions by modulating TC-MSCs. Supplementation of NLGP in DC-T cell co-culture significantly restored the inhibition in T cell proliferation and IFNγ secretion almost towards normal in the presence of TC-MSCs. Adoptive transfer of NLGP-treated TC-MSC supernatant educated CD8+ T cells in solid B16 melanoma bearing mice resulted in better tumor growth restriction than TC-MSC conditioned CD8+ T cells. NLGP downregulates IL-10 secretion by TC-MSCs, and concomitantly, pSTAT3 expression was downregulated in DCs in the presence of NLGP-treated TC-MSC supernatant. As pSTAT3 negatively regulates cystathionase expression in DCs, NLGP indirectly helps to maintain an almost normal level of cystathionase gene expression in DCs making them able to export sufficient amount of cysteine required for optimum T cell proliferation and effector functions within TME. Conclusions NLGP could be a prospective immunotherapeutic agent to control the functions and behavior of highly immunosuppressive TC-MSCs providing optimum CD8+ T cell functions to showcase an important new approach that might be effective in overall cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13287-019-1349-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
6
|
Sarkar M, Ghosh S, Bhuniya A, Ghosh T, Guha I, Barik S, Biswas J, Bose A, Baral R. Neem leaf glycoprotein prevents post-surgical sarcoma recurrence in Swiss mice by differentially regulating cytotoxic T and myeloid-derived suppressor cells. PLoS One 2017; 12:e0175540. [PMID: 28414726 PMCID: PMC5393573 DOI: 10.1371/journal.pone.0175540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
Post-surgical tumor recurrence is a common problem in cancer treatment. In the present study, the role of neem leaf glycoprotein (NLGP), a novel immunomodulator, in prevention of post-surgical recurrence of solid sarcoma was examined. Data suggest that NLGP prevents tumor recurrence after surgical removal of sarcoma in Swiss mice and increases their tumor-free survival time. In NLGP-treated tumor-free mice, increased cytotoxic CD8+ T cells and a decreased population of suppressor cells, especially myeloid-derived suppressor cells (MDSCs) was observed. NLGP-treated CD8+ T cells showed greater cytotoxicity towards tumor-derived MDSCs and supernatants from the same CD8+ T cell culture caused upregulation of FasR and downregulation of cFLIP in MDSCs. To elucidate the role of CD8+ T cells, specifically in association with the downregulation in MDSCs, CD8+ T cells were depleted in vivo before NLGP immunization in surgically tumor removed mice and tumor recurrence was noted. These mice also exhibited increased MDSCs along with decreased levels of Caspase 3, Caspase 8 and increased cFLIP expression. In conclusion, it can be stated that NLGP, by activating CD8+ T cells, down regulates the proportion of MDSCs. Accordingly, suppressive effects of MDSCs on CD8+ T cells are minimized and optimum immune surveillance in tumor hosts is maintained to eliminate the residual tumor mass appearing during recurrence.
Collapse
Affiliation(s)
- Madhurima Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Jaydip Biswas
- Department of Surgical Oncology and Medical Oncology, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
- * E-mail: ,
| |
Collapse
|
7
|
Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core: Critical role of IL-10/STAT3 signaling. Mol Immunol 2016; 80:1-10. [DOI: 10.1016/j.molimm.2016.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023]
|