1
|
Bandala C, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG, Contreras-García IJ, Martínez-López V, Cruz-Hernández TR, Carro-Rodríguez J, Vargas-Hernández MA, Ignacio-Mejía I, Alfaro-Rodriguez A, Lara-Padilla E. Therapeutic Potential of Dopamine and Related Drugs as Anti-Inflammatories and Antioxidants in Neuronal and Non-Neuronal Pathologies. Pharmaceutics 2023; 15:pharmaceutics15020693. [PMID: 36840015 PMCID: PMC9966027 DOI: 10.3390/pharmaceutics15020693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Dopamine (DA), its derivatives, and dopaminergic drugs are compounds widely used in the management of diseases related to the nervous system. However, DA receptors have been identified in nonneuronal tissues, which has been related to their therapeutic potential in pathologies such as sepsis or septic shock, blood pressure, renal failure, diabetes, and obesity, among others. In addition, DA and dopaminergic drugs have shown anti-inflammatory and antioxidant properties in different kinds of cells. AIM To compile the mechanism of action of DA and the main dopaminergic drugs and show the findings that support the therapeutic potential of these molecules for the treatment of neurological and non-neurological diseases considering their antioxidant and anti-inflammatory actions. METHOD We performed a review article. An exhaustive search for information was carried out in specialized databases such as PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, Bookshelf, DrugBank, Livertox, and Clinical Trials. RESULTS We showed that DA and dopaminergic drugs have emerged for the management of neuronal and nonneuronal diseases with important therapeutic potential as anti-inflammatories and antioxidants. CONCLUSIONS DA and DA derivatives can be an attractive treatment strategy and a promising approach to slowing the progression of disorders through repositioning.
Collapse
Affiliation(s)
- Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Mexico City 14389, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (C.B.); (E.L.-P.); Tel.: +52-(55)-5999-1000 (ext. 19307) (C.B.); +52-(55)-57296000 (ext. 62712) (E.L.-P.)
| | - Noemi Cárdenas-Rodríguez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | | | | | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | | | - Jazmín Carro-Rodríguez
- Escuela de Biología Experimental, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico
| | | | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Mexico City 11200, Mexico
| | - Alfonso Alfaro-Rodriguez
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Mexico City 14389, Mexico
| | - Eleazar Lara-Padilla
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (C.B.); (E.L.-P.); Tel.: +52-(55)-5999-1000 (ext. 19307) (C.B.); +52-(55)-57296000 (ext. 62712) (E.L.-P.)
| |
Collapse
|
2
|
Preparation of Stable POSS-Based Superhydrophobic Textiles Using Thiol–Ene Click Chemistry. Polymers (Basel) 2022; 14:polym14071426. [PMID: 35406300 PMCID: PMC9002989 DOI: 10.3390/polym14071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a superhydrophobic fabric was synthesized by modifying the fiber’s surface with dopamine-containing hydroxyl functional groups. Furthermore, we introduced mercapto-based functional groups by the hydrolysis of mercaptopropylmethyldimethoxysilane (MPMDS) and finally grafted POSS and mercaptans using a thiol–ene click reaction. These processes generated a superhydrophobic fabric with a static contact and a sliding angle of 162° and 8°, respectively. The superhydrophobic fabric’s compact and regular micro-nano rough structure based on POSS and mercaptans provides stable fastness and durability, as well as high resistance to organic solvents, acid–base environments, mechanical abrasion, UV rays, and washing. Moreover, it can be used for self-cleaning and oil–water separation, and it has a wide range of applications in the coating industry.
Collapse
|
3
|
Hofmann BB, Krapp N, Li Y, De La Torre C, Sol M, Braun JD, Kolibabka M, Pallavi P, Krämer BK, Yard BA, Kälsch AI. N-Octanoyl-Dopamine inhibits cytokine production in activated T-cells and diminishes MHC-class-II expression as well as adhesion molecules in IFNγ-stimulated endothelial cells. Sci Rep 2019; 9:19338. [PMID: 31853095 PMCID: PMC6920350 DOI: 10.1038/s41598-019-55983-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/29/2019] [Indexed: 01/06/2023] Open
Abstract
IFNγ enhances allograft immunogenicity and facilitates T-cell mediated rejection. This may cause interstitial fibrosis and tubular atrophy (IFTA), contributing to chronic allograft loss. We assessed if inhibition of T-cell activation by N-octanoyl dopamine (NOD) impairs adherence of activated T-cells to endothelial cells and the ability of activated T-cells to produce IFNγ. We also assessed if NOD affects IFNγ mediated gene expression in endothelial cells. The presence of NOD during T-cell activation significantly blunted their adhesion to unstimulated and cytokine stimulated HUVEC. Supernatants of these T-cells displayed significantly lower concentrations of TNFα and IFNγ and were less capable to facilitate T-cell adhesion. In the presence of NOD VLA-4 (CD49d/CD29) and LFA-1 (CD11a/CD18) expression on T-cells was reduced. NOD treatment of IFNγ stimulated HUVEC reduced the expression of MHC class II transactivator (CIITA), of MHC class II and its associated invariant chain CD74. Since IFTA is associated with T-cell mediated rejection and IFNγ to a large extent regulates immunogenicity of allografts, our current data suggest a potential clinical use of NOD in the treatment of transplant recipients. Further in vivo studies are warranted to confirm these in vitro findings and to assess the benefit of NOD on IFTA in clinically relevant models.
Collapse
Affiliation(s)
- Björn B Hofmann
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicolas Krapp
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yingchun Li
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marloes Sol
- Department of Medical Biology and Pathology, University Medical Center Groningen, Groningen, Netherlands
| | - Jana D Braun
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias Kolibabka
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Prama Pallavi
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Anna-Isabelle Kälsch
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
4
|
N-oleoyldopamine modulates activity of midbrain dopaminergic neurons through multiple mechanisms. Neuropharmacology 2017; 119:111-122. [PMID: 28400256 DOI: 10.1016/j.neuropharm.2017.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/07/2017] [Accepted: 04/07/2017] [Indexed: 11/23/2022]
Abstract
N-oleoyl-dopamine (OLDA) is an amide of dopamine and oleic acid, synthesized in catecholaminergic neurons. The present study investigates OLDA targets in midbrain dopaminergic (DA) neurons. Substantia Nigra compacta (SNc) DA neurons recorded in brain slices were excited by OLDA in wild type mice. In transient receptor potential vanilloid 1 (TRPV1) knockout (KO) mice, however, SNc DA neurons displayed sustained inhibition of firing. In the presence of the dopamine type 2 receptor (D2R) antagonist sulpiride or the dopamine transporter blocker nomifensine no such inhibition was observed. Under sulpiride OLDA slightly excited SNc DA neurons, an action abolished upon combined application of the cannabinoid1 and 2 receptor antagonists AM251 and AM630. In ventral tegmental area (VTA) DA neurons from TRPV1 KO mice a transient inhibition of firing by OLDA was observed. Thus OLDA modulates the firing of nigrostriatal DA neurons through interactions with TRPV1, cannabinoid receptors and dopamine uptake. These findings suggest further development of OLDA-like tandem molecules for the treatment of movement disorders including Parkinson's disease.
Collapse
|
5
|
Wang Y, Plastina P, Vincken JP, Jansen R, Balvers M, ten Klooster JP, Gruppen H, Witkamp R, Meijerink J. N-Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2. ACS Chem Neurosci 2017; 8:548-557. [PMID: 28292183 DOI: 10.1021/acschemneuro.6b00298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies indicate that the n-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA) contributes to an attenuated inflammatory status in the development of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. To explain these effects, different mechanisms are being proposed, including those involving endocannabinoids and related signaling molecules. Many of these compounds belong to the fatty acid amides, conjugates of fatty acids with biogenic amines. Conjugates of DHA with ethanolamine or serotonin have previously been shown to possess anti-inflammatory and potentially neuroprotective properties. Here, we synthesized another amine conjugate of DHA, N-docosahexaenoyl dopamine (DHDA), and tested its immune-modulatory properties in both RAW 264.7 macrophages and BV-2 microglial cells. N-Docosahexaenoyl dopamine significantly suppressed the production of nitric oxide (NO), the cytokine interleukin-6 (IL-6), and the chemokines macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1), whereas its parent compounds, dopamine and DHA, were ineffective. Further exploration of potential effects of DHDA on key inflammatory mediators revealed that cyclooxygenase-2 (COX-2) mRNA level and production of prostaglandin E2 (PGE2) were concentration-dependently inhibited in macrophages. In activated BV-2 cells, PGE2 production was also reduced, without changes in COX-2 mRNA levels. In addition, DHDA did not affect NF-kB activity in a reporter cell line. Finally, the immune-modulatory activities of DHDA were compared with those of N-arachidonoyl dopamine (NADA) and similar potencies were found in both cell types. Taken together, our data suggest that DHDA, a potentially endogenous endocannabinoid, may be an additional member of the group of immune-modulating n-3 fatty acid-derived lipid mediators.
Collapse
Affiliation(s)
| | - Pierluigi Plastina
- Department
of Chemistry and Chemical Technologies, University of Calabria, 87036 Cosenza, Italy
| | | | | | | | - Jean Paul ten Klooster
- Research Centre Technology & Innovation, Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
6
|
Sun CK, Kao YH, Lee PH, Wu MC, Chen KC, Lin YC, Tsai MS, Chen PH. Dopamine impairs functional integrity of rat hepatocytes through nuclear factor kappa B activity modulation: An in vivo, ex vivo, and in vitro study. Liver Transpl 2015; 21:1520-32. [PMID: 26421799 DOI: 10.1002/lt.24346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/12/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
Dopamine (DA) is commonly used to maintain the hemodynamic stability of brain-dead donors despite its controversial effects on organ functions. This study aimed at examining the hemodynamic effect of DA in a rat brain-dead model in vivo, alteration of hepatocyte integrity in liver grafts after ex vivo preservation, and changes in cultured clone-9 hepatocytes including cellular viability, cell cycle, apoptotic regulators, and lipopolysaccharide (LPS)-stimulated nuclear factor kappa B (NF-κB) signaling machinery. Although in vivo findings demonstrated enhanced portal venous blood flow and hepatic microcirculatory perfusion after DA infusion, no apparent advantage was noted in preserving hepatocyte integrity ex vivo. In vitro, prolonged exposure to high-dose DA reduced proliferation and induced G1 growth arrest of clone-9 hepatocytes with concomitant decreases in B cell lymphoma 2 (BCL2)/B cell lymphoma 2-associated X protein (BAX) and heat shock protein 70/BAX protein ratios and intracellular NF-κB p65. Moreover, DA pretreatment suppressed LPS-elicited inhibitor of κBα phosphorylation and subsequent NF-κB nuclear translocation, suggesting that DA may down-regulate NF-κB signaling, thereby reducing expression of antiapoptotic regulators, such as BCL2. In conclusion, despite augmentation of hepatic perfusion, DA infusion failed to preserve hepatocyte integrity both in vivo and ex vivo. In vitro findings demonstrated that high-dose DA may hamper the function of NF-κB signaling machinery and eventually undermine functional integrity of hepatocytes in liver grafts.
Collapse
Affiliation(s)
- Cheuk-Kwan Sun
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.,Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan.,The School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Ming-Chang Wu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Kun-Cho Chen
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Chun Lin
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | | | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| |
Collapse
|