1
|
Chimeric antigen receptor -T cell therapy: Applications and challenges in treatment of allergy and asthma. Biomed Pharmacother 2019; 123:109685. [PMID: 31862474 DOI: 10.1016/j.biopha.2019.109685] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/28/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023] Open
Abstract
Despite the current advancements, cancer treatment approaches have limitations restricting their cure rate. Immunotherapy techniques are among novel and promising cancer therapeutic approaches. Therapeutic antibodies and adoptive cell therapy (ACT) are the main branches of immunotherapy. T lymphocytes and genetically engineered cells are among important cells which can be used in ACT. This review has focused on recent advances in engineered cell-based immunotherapy based on T lymphocytes with chimeric antigen receptors (CARs). CARs are recombinant receptors expressing T cell signaling domains with or without co-stimulatory molecules. CAR-T cells are expanded ex vivo and re-infused to patients in order to improve their therapeutic efficacy. Nowadays, the beneficial function of CAR-T cell therapy has been indicated in various diseases including hematological malignancies, solid tumors, autoimmune diseases, and allergic diseases such as asthma. Furthermore, antigen-specific T regulatory cells (Tregs) and gene-edited T cells seem to be beneficial in controlling inflammation in allergic asthma. In fact, dysregulated function of Tregs is responsible for dominance of T helper 2 immune response and progression of allergic asthma. CAR-Treg cells can also be designed and reproduced using iTreg population to manage asthma. In addition, universal CAR-T cells can be modified to selectively target multiple antigens. The fourth generation CAR-T cells (i.e. TRUCK cells) represent novel strategies to cure asthma and allergic diseases as well. Despite the advantages of CAR-T cells, their applications can be associated with some unwanted reactions such as cytokine storm, anaphylaxis, neurotoxicity, etc. For clinical application, there is a need to prevent and manage these complications by optimizing ACT protocols.
Collapse
|
2
|
Alam IS, Mayer AT, Sagiv-Barfi I, Wang K, Vermesh O, Czerwinski DK, Johnson EM, James ML, Levy R, Gambhir SS. Imaging activated T cells predicts response to cancer vaccines. J Clin Invest 2018; 128:2569-2580. [PMID: 29596062 DOI: 10.1172/jci98509] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
In situ cancer vaccines are under active clinical investigation, given their reported ability to eradicate both local and disseminated malignancies. Intratumoral vaccine administration is thought to activate a T cell-mediated immune response, which begins in the treated tumor and cascades systemically. In this study, we describe a PET tracer (64Cu-DOTA-AbOX40) that enabled noninvasive and longitudinal imaging of OX40, a cell-surface marker of T cell activation. We report the spatiotemporal dynamics of T cell activation following in situ vaccination with CpG oligodeoxynucleotide in a dual tumor-bearing mouse model. We demonstrate that OX40 imaging was able to predict tumor responses on day 9 after treatment on the basis of tumor tracer uptake on day 2, with greater accuracy than both anatomical and blood-based measurements. These studies provide key insights into global T cell activation following local CpG treatment and indicate that 64Cu-DOTA-AbOX40 is a promising candidate for monitoring clinical cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Israt S Alam
- Department of Radiology.,Molecular Imaging Program at Stanford
| | - Aaron T Mayer
- Department of Radiology.,Molecular Imaging Program at Stanford.,Department of Bioengineering, and
| | - Idit Sagiv-Barfi
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Kezheng Wang
- Department of Radiology.,Department of Radiology, The Fourth Hospital of Harbin Medical University and Molecular Imaging Center of Harbin Medical University, Harbin, China
| | - Ophir Vermesh
- Department of Radiology.,Molecular Imaging Program at Stanford
| | - Debra K Czerwinski
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Emily M Johnson
- Department of Radiology.,Molecular Imaging Program at Stanford.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Michelle L James
- Department of Radiology.,Molecular Imaging Program at Stanford.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California, USA
| | | |
Collapse
|
3
|
Mochizuki AY, Frost IM, Mastrodimos MB, Plant AS, Wang AC, Moore TB, Prins RM, Weiss PS, Jonas SJ. Precision Medicine in Pediatric Neurooncology: A Review. ACS Chem Neurosci 2018; 9:11-28. [PMID: 29199818 PMCID: PMC6656379 DOI: 10.1021/acschemneuro.7b00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central nervous system tumors are the leading cause of cancer related death in children. Despite much progress in the field of pediatric neurooncology, modern combination treatment regimens often result in significant late effects, such as neurocognitive deficits, endocrine dysfunction, secondary malignancies, and a host of other chronic health problems. Precision medicine strategies applied to pediatric neurooncology target specific characteristics of individual patients' tumors to achieve maximal killing of neoplastic cells while minimizing unwanted adverse effects. Here, we review emerging trends and the current literature that have guided the development of new molecularly based classification schemas, promising diagnostic techniques, targeted therapies, and delivery platforms for the treatment of pediatric central nervous system tumors.
Collapse
Affiliation(s)
- Aaron Y. Mochizuki
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Isaura M. Frost
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Melina B. Mastrodimos
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ashley S. Plant
- Division
of Pediatric Oncology, Children’s Hospital of Orange County, Orange, California 92868, United States
| | - Anthony C. Wang
- Department
of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Theodore B. Moore
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Robert M. Prins
- Department
of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Steven J. Jonas
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children’s
Discovery and Innovation Institute, University of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|