1
|
Al-Joufi FA, Uttra AM, Qasim S, Iqbal U, Sial NT, Alhumaid NM. Anti-arthritic and immunomodulatory efficacy of Micromeria biflora Benth extract and its fractions in rats by restoring oxidative stress, metalloproteinases, pro-inflammatory and anti-inflammatory cytokines network. Inflammopharmacology 2024; 32:2477-2491. [PMID: 38717557 DOI: 10.1007/s10787-024-01479-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/24/2024] [Indexed: 08/06/2024]
Abstract
Micromeria biflora (M.B) Benth has proven anti-inflammatory efficacy, thereby, the goal of the current investigation was to assess the anti-arthritic potential of M.B ethanolic extract and fractions as well as to investigate the likely mechanism of action. The effectiveness of M.B against acute arthritic manifestations was assessed using an arthritic model prompted by formaldehyde, whereas a chronic model was developed using an adjuvant called Complete Freund's in Sprague-Dawley rats. Weekly evaluations were conducted for parameters involving paw volume, body weight, and arthritic score; at the completion of the CFA model, hematological, biochemical and oxidative stress parameters as well as the level of various mediators (PGE2, IL-1β, TNFα, IL6, MMP2, 3, 9, VEGF, NF-ĸB, IL-10, and IL-4) were evaluated. The results demonstrated the plant's ability to treat arthritis by showing a significant decrease in paw volume, arthritic score, and histological characteristics. The levels of NF-ĸB, MMP2, 3, 9, IL6, IL1β, TNFα, and VEGF were all significantly reduced after treatment with plant extract and fractions. Plant extract and its fractions substantially preserved body weight loss, oxidative stress markers and levels of IL-4 and 1L-10. PGE2 levels were also shown to be reduced in the treatment groups, supporting the M.B immunomodulatory ability. Hematological and biochemical indicators were also normalized after M.B administration. Outcomes of the study validated the anti-arthritic and immunomodulatory attributes of M.B probably through modulating oxidative stress, inflammatory, pro-inflammatory and anti-inflammatory biomarkers.
Collapse
Affiliation(s)
- Fakhria A Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Aljouf, Saudi Arabia
| | - Ambreen Malik Uttra
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Sumera Qasim
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Aljouf, Saudi Arabia.
| | - Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Noura M Alhumaid
- College of Pharmacy, Jouf University, 72341, Aljouf, Saudi Arabia
| |
Collapse
|
2
|
Li J, Jia N, Cui M, Li Y, Li X, Chu X. The intestinal mucosal barrier - A key player in rheumatoid arthritis? Clin Anat 2023; 36:977-985. [PMID: 37191299 DOI: 10.1002/ca.24055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Rheumatoid arthritis (RA) is a recurrent chronic autoimmune disease, which is not only difficult to treat, but also has a great adverse impact on the physical and mental health of patients. The intestinal mucosa barrier has some relationship with RA and it consists of mechanical barrier, chemical barrier, immune barrier, and microflora barrier. It is a dynamic system that contributes to the stability of the intestinal environment by regulating the absorption of relevant substances from the lumen into the circulation, while limiting the passage of harmful substances. This article summarizes the connection between the intestinal mucosa barrier and RA, and proposes the role of relevant Chinese medicines on RA from the point of improving barriers, to provide new perspectives on the pathogenesis and therapeutic strategies of RA.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, China
| |
Collapse
|
3
|
Muller IB, Lin M, de Jonge R, Will N, López-Navarro B, van der Laken C, Struys EA, Oudejans CBM, Assaraf YG, Cloos J, Puig-Kröger A, Jansen G. Methotrexate Provokes Disparate Folate Metabolism Gene Expression and Alternative Splicing in Ex Vivo Monocytes and GM-CSF- and M-CSF-Polarized Macrophages. Int J Mol Sci 2023; 24:9641. [PMID: 37298590 PMCID: PMC10253671 DOI: 10.3390/ijms24119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Macrophages constitute important immune cell targets of the antifolate methotrexate (MTX) in autoimmune diseases, including rheumatoid arthritis. Regulation of folate/MTX metabolism remains poorly understood upon pro-inflammatory (M1-type/GM-CSF-polarized) and anti-inflammatory (M2-type/M-CSF-polarized) macrophages. MTX activity strictly relies on the folylpolyglutamate synthetase (FPGS) dependent intracellular conversion and hence retention to MTX-polyglutamate (MTX-PG) forms. Here, we determined FPGS pre-mRNA splicing, FPGS enzyme activity and MTX-polyglutamylation in human monocyte-derived M1- and M2-macrophages exposed to 50 nmol/L MTX ex vivo. Moreover, RNA-sequencing analysis was used to investigate global splicing profiles and differential gene expression in monocytic and MTX-exposed macrophages. Monocytes displayed six-eight-fold higher ratios of alternatively-spliced/wild type FPGS transcripts than M1- and M2-macrophages. These ratios were inversely associated with a six-ten-fold increase in FPGS activity in M1- and M2-macrophages versus monocytes. Total MTX-PG accumulation was four-fold higher in M1- versus M2-macrophages. Differential splicing after MTX-exposure was particularly apparent in M2-macrophages for histone methylation/modification genes. MTX predominantly induced differential gene expression in M1-macrophages, involving folate metabolic pathway genes, signaling pathways, chemokines/cytokines and energy metabolism. Collectively, macrophage polarization-related differences in folate/MTX metabolism and downstream pathways at the level of pre-mRNA splicing and gene expression may account for variable accumulation of MTX-PGs, hence possibly impacting MTX treatment efficacy.
Collapse
Affiliation(s)
- Ittai B. Muller
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Marry Lin
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Robert de Jonge
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Nico Will
- Facility for Environment and Natural Science, Brandenburg Technical University Cottbus-Senftenberg, 01968 Senftenberg, Germany;
| | - Baltasar López-Navarro
- Laboratorio de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital Gregorio Marañón, 28007 Madrid, Spain; (B.L.-N.); (A.P.-K.)
| | - Conny van der Laken
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center–location VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Cees B. M. Oudejans
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center–location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Amaya Puig-Kröger
- Laboratorio de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital Gregorio Marañón, 28007 Madrid, Spain; (B.L.-N.); (A.P.-K.)
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center–location VUmc, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
4
|
Xia YT, Wu QY, Hok-Chi Cheng E, Ting-Xia Dong T, Qin QW, Wang WX, Wah-Keung Tsim K. The inclusion of extract from aerial part of Scutellaria baicalensis in feeding of pearl gentian grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceo-latus♂) promotes growth and immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 127:521-529. [PMID: 35792347 DOI: 10.1016/j.fsi.2022.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The root of Scutellaria baicalensis (Scutellaria Radix) has been used as herbal medicine for years in China; however, its stem and leaf (aerial part) are considered as waste. The water extract of aerial part of S. baicalensis, named as SBA, having anti-microbial property has been applied in fish aquaculture. To extend the usage of SBA in fish feeding, SBA was employed to feed pearl gentian grouper (a hybrid of Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂), and subsequently the total fish output, the levels of digestive enzymes and inflammatory cytokines were determined. Feeding the fish with different doses of SBA for two months, the body length and weight were significantly increased by 5%-10%. In parallel, the expressions of alkaline phosphatase and growth-related factors in bone, liver and muscle of SBA-fed fish were doubled, which could account the growth promoting effect of SBA. Besides, the activity of digestive enzyme, lipase, and the expressions of anti-inflammatory cytokines were markedly stimulated by 2-3 times under the feeding of 3% SBA-containing diet. The results indicated the growth promoting activity of SBA in culture of pearl gentian grouper, as well as the effect of SBA in strengthening the immunity. These beneficial effects of SBA feeding can increase the total yield of pearl gentian grouper in aquaculture. Thus, the re-cycle of waste products during the farming of S. baicalensis herb in serving as fish feeding should be encouraged.
Collapse
Affiliation(s)
- Yi-Teng Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi-Yun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Edwin Hok-Chi Cheng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Xiong Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Ben Mrid R, Bouchmaa N, Ainani H, El Fatimy R, Malka G, Mazini L. Anti-rheumatoid drugs advancements: New insights into the molecular treatment of rheumatoid arthritis. Biomed Pharmacother 2022; 151:113126. [PMID: 35643074 DOI: 10.1016/j.biopha.2022.113126] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of more than 100 types of arthritis. This chronic autoimmune disorder affects the lining of synovial joints in about 0.5% of people and may induce severe joints deformity and disability. RA impacts health life of people from all sexes and ages with more prevalence in elderly and women people. Significant improvement has been noted in the last two decades revealing the mechanisms of the development of RA, the improvement of the early diagnosis and the development of new treatment options. Non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying antirheumatic drugs (DMARDs) remain the most known treatments used against RA. However, not all patients respond well to these drugs and therefore, new solutions are of immense need to improve the disease outcomes. In the present review, we discuss and highlight the recent findings concerning the different classes of RA therapies including the conventional and modern drug therapies, as well as the recent emerging options including the phyto-cannabinoid and cell- and RNA-based therapies. A better understanding of their mechanisms and pathways might help find a specific target against inflammation, cartilage damage, and reduce side effects in arthritis.
Collapse
Affiliation(s)
- Reda Ben Mrid
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150 Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150 Ben-Guerir, Morocco
| | - Hassan Ainani
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150 Ben-Guerir, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150 Ben-Guerir, Morocco
| | - Gabriel Malka
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150 Ben-Guerir, Morocco
| | - Loubna Mazini
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150 Ben-Guerir, Morocco.
| |
Collapse
|
6
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Zhao T, Xie Z, Xi Y, Liu L, Li Z, Qin D. How to Model Rheumatoid Arthritis in Animals: From Rodents to Non-Human Primates. Front Immunol 2022; 13:887460. [PMID: 35693791 PMCID: PMC9174425 DOI: 10.3389/fimmu.2022.887460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by both genetic and environmental factors. At present, rodent models are primarily used to study the pathogenesis and treatment of RA. However, the genetic divergences between rodents and humans determine differences in the development of RA, which makes it necessary to explore the establishment of new models. Compared to rodents, non-human primates (NHPs) are much more closely related to humans in terms of the immune system, metabolic conditions, and genetic make-up. NHPs model provides a powerful tool to study the development of RA and potential complications, as well as preclinical studies in drug development. This review provides a brief overview of the RA animal models, emphasizes the replication methods, pros and cons, as well as evaluates the validity of the rodent and NHPs models.
Collapse
Affiliation(s)
- Ting Zhao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yujiang Xi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Liu
- Ge Jiu People’s Hospital, Yunnan Honghe Prefecture Central Hospital, Gejiu, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Marasini N, Er G, Fu C, Subasic CN, Ibrahim J, Skwarczynski M, Toth I, Whittaker AK, Kaminskas LM. Development of a hyperbranched polymer-based methotrexate nanomedicine for rheumatoid arthritis. Acta Biomater 2022; 142:298-307. [PMID: 35114374 DOI: 10.1016/j.actbio.2022.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
Abstract
Methotrexate (MTX) is an effective disease modifying anti-rheumatic drug, but can cause significant hepatotoxicity and liver failure in some individuals. The goal of this work was to develop a MTX-conjugated hyperbranched polymeric nanoparticle based on oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and examine its ability to selectively deliver MTX to rheumatic joints while sparing the liver. MTX was conjugated to the hyperbranched polymer via a matrix metalloproteinase-13 cleavable peptide linker. Two populations of nanoparticles were produced, with sizes averaging 20 and 200nm. Tri-peptide (FFK)-modified MTX was liberated in the presence of matrix metalloproteinase 13 (MMP-13)and showed 100 to 1000-fold lower antiproliferative capacity in monocytic THP-1 cells compared to unmodified MTX, depending on whether the gamma-carboxylate of MTX was functionalized with O-tert-butyl. Nanoparticles showed prolonged plasma exposure after intravenous injection with a terminal half-life of approximately 1 day, but incomplete (50%) absorption after subcutaneous administration. Nanoparticles selectively accumulated in inflamed joints in a rat model of rheumatoid arthritis and showed less than 5% biodistribution in the liver after 5 days. MTX-OtBu nanoparticles also showed no hepatocellular toxicity at 500 μM MTX equivalents. This work provides support for the further development of OEGMA-based hyperbranched polymers as MTX drug delivery systems for rheumatoid arthritis. STATEMENT OF SIGNIFICANCE: Nanomedicines containing covalently conjugated methotrexate offer the potential for selective accumulation of the potent hepatotoxic drug in rheumatic joints and limited liver exposure. One limitation of the high surface presentation of methotrexate on a nanoparticle surface, however, is the potential for enhanced liver uptake. We developed several OEGMA-based hyperbranched polymers containing alpha-carboxyl modified and unmodified methotrexate conjugated via an MMP-13 cleavable hexapeptide linker. The modified methotrexate polymer showed promising in vitro and in vivo behavior warranting further development and optimization as an anti-rheumatic nanomedicine. This work presents a new avenue for further research into the development of hyperbranched polymers for rheumatoid arthritis and suggests interesting approaches that may overcome some limitations associated with the translation of anti-rheumatic nanomedicines into patients.
Collapse
|
9
|
Gosselt HR, Muller IB, Jansen G, van Weeghel M, Vaz FM, Hazes JMW, Heil SG, de Jonge R. Identification of Metabolic Biomarkers in Relation to Methotrexate Response in Early Rheumatoid Arthritis. J Pers Med 2020; 10:jpm10040271. [PMID: 33321888 PMCID: PMC7768454 DOI: 10.3390/jpm10040271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to identify baseline metabolic biomarkers for response to methotrexate (MTX) therapy in rheumatoid arthritis (RA) using an untargeted method. In total, 82 baseline plasma samples (41 insufficient responders and 41 sufficient responders to MTX) were selected from the Treatment in the Rotterdam Early Arthritis Cohort (tREACH, trial number: ISRCTN26791028) based on patients' EULAR response at 3 months. Metabolites were assessed using high-performance liquid chromatography-quadrupole time of flight mass spectrometry. Differences in metabolite concentrations between insufficient and sufficient responders were assessed using partial least square regression discriminant analysis (PLS-DA) and Welch's t-test. The predictive performance of the most significant findings was assessed in a receiver operating characteristic plot with area under the curve (AUC), sensitivity and specificity. Finally, overrepresentation analysis was performed to assess if the best discriminating metabolites were enriched in specific metabolic events. Baseline concentrations of homocystine, taurine, adenosine triphosphate, guanosine diphosphate and uric acid were significantly lower in plasma of insufficient responders versus sufficient responders, while glycolytic intermediates 1,3-/2,3-diphosphoglyceric acid, glycerol-3-phosphate and phosphoenolpyruvate were significantly higher in insufficient responders. Homocystine, glycerol-3-phosphate and 1,3-/2,3-diphosphoglyceric acid were independent predictors and together showed a high AUC of 0.81 (95% CI: 0.72-0.91) for the prediction of insufficient response, with corresponding sensitivity of 0.78 and specificity of 0.76. The Warburg effect, glycolysis and amino acid metabolism were identified as underlying metabolic events playing a role in clinical response to MTX in early RA. New metabolites and potential underlying metabolic events correlating with MTX response in early RA were identified, which warrant validation in external cohorts.
Collapse
Affiliation(s)
- Helen R. Gosselt
- Amsterdam Gastroenterology and Metabolism, Department of Clinical Chemistry, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands; (I.B.M.); (R.d.J.)
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-20-4443029
| | - Ittai B. Muller
- Amsterdam Gastroenterology and Metabolism, Department of Clinical Chemistry, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands; (I.B.M.); (R.d.J.)
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Michel van Weeghel
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (F.M.V.)
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M. Vaz
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (F.M.V.)
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Johanna M. W. Hazes
- Department of Rheumatology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Academic Center of Excellence−Inflammunity, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sandra G. Heil
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Academic Center of Excellence−Inflammunity, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Robert de Jonge
- Amsterdam Gastroenterology and Metabolism, Department of Clinical Chemistry, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands; (I.B.M.); (R.d.J.)
| |
Collapse
|
10
|
Cross-Talk between Diet-Associated Dysbiosis and Hand Osteoarthritis. Nutrients 2020; 12:nu12113469. [PMID: 33198220 PMCID: PMC7696908 DOI: 10.3390/nu12113469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hand osteoarthritis (OA) is a degenerative joint disease which leads to pain and disability. Recent studies focus on the role of obesity and metabolic syndrome in inducing or worsening joint damage in hand OA patients, suggesting that chronic low-grade systemic inflammation may represent a possible linking factor. The gut microbiome has a crucial metabolic role which is fundamental for immune system development, among other important functions. Intestinal microbiota dysbiosis may favour metabolic syndrome and low-grade inflammation-two important components of hand OA onset and evolution. The aim of this narrative is to review the recent literature concerning the possible contribution of dysbiosis to hand OA onset and progression, and to discuss the importance of gut dysbiosis on general health and disease.
Collapse
|
11
|
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2020; 77:710-724. [PMID: 31086953 DOI: 10.1093/nutrit/nuz015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, much new data on intestinal alkaline phosphatase (IAP) have been published, and major breakthroughs have been disclosed. The aim of the present review is to critically analyze the publications released over the last 5 years. These breakthroughs include, for example, the direct implication of IAP in intestinal tight junction integrity and barrier function maintenance; chronic intestinal challenge with low concentrations of Salmonella generating long-lasting depletion of IAP and increased susceptibility to inflammation; the suggestion that genetic mutations in the IAP gene in humans contribute to some forms of chronic inflammatory diseases and loss of functional IAP along the gut and in stools; stool IAP as an early biomarker of incipient diabetes in humans; and omega-3 fatty acids as direct inducers of IAP in intestinal tissue. Many recent papers have also explored the prophylactic and therapeutic potential of IAP and other alkaline phosphatase (AP) isoforms in various experimental settings and diseases. Remarkably, nearly all data confirm the potent anti-inflammatory properties of (I)AP and the negative consequences of its inhibition on health. A simplified model of the body AP system integrating the IAP compartment is provided. Finally, the list of nutrients and food components stimulating IAP has continued to grow, thus emphasizing nutrition as a potent lever for limiting inflammation.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France, and the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| |
Collapse
|
12
|
First in man study of [ 18F]fluoro-PEG-folate PET: a novel macrophage imaging technique to visualize rheumatoid arthritis. Sci Rep 2020; 10:1047. [PMID: 31974480 PMCID: PMC6978456 DOI: 10.1038/s41598-020-57841-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023] Open
Abstract
Non-invasive imaging of arthritis activity in rheumatoid arthritis (RA) patients using macrophage PET holds promise for early diagnosis and therapeutic response monitoring. Previously obtained results with macrophage tracer (R)-[11C]PK11195 were encouraging, but the imaging signal could be further improved by reduction of background uptake. Recently, the novel macrophage tracer [18F]fluoro-PEG-folate was developed. This tracer showed excellent targeting of the folate receptor β on activated macrophages in synovial tissue in a preclinical arthritic rat model. We performed three substudies to investigate the biodistribution, potential for imaging arthritis and kinetic properties of [18F]fluoro-PEG-folate in RA patients. Firstly, biodistribution demonstrated fast clearance of [18F]fluoro-PEG-folate from heart and blood vessels and no dose limiting uptake in organs. Secondly, [18F]fluoro-PEG-folate showed uptake in arthritic joints with significantly lower background and hence significantly higher target-to-background ratios as compared to reference macrophage tracer (R)-[11C]PK11195. Lastly, dynamic scanning demonstrated fast tracer uptake in affected joints, reaching a plateau after 1 minute, co-existing with a rapid blood clearance. In conclusion, this first in man study demonstrates the potential of [18F]fluoro-PEG-folate to image arthritis activity in RA with favourable imaging characteristics of rapid clearance and low background uptake, that allow for detection of inflammatory activity in the whole body.
Collapse
|
13
|
Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev 2019; 18:102397. [DOI: 10.1016/j.autrev.2019.102397] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
|