1
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Singhto N, Pongphitcha P, Jinawath N, Hongeng S, Chutipongtanate S. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers (Basel) 2024; 16:1681. [PMID: 38730633 PMCID: PMC11083250 DOI: 10.3390/cancers16091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Liquid biopsy involves the utilization of minimally invasive or noninvasive techniques to detect biomarkers in biofluids for disease diagnosis, monitoring, or guiding treatments. This approach is promising for the early diagnosis of childhood cancer, especially for brain tumors, where tissue biopsies are more challenging and cause late detection. Extracellular vesicles offer several characteristics that make them ideal resources for childhood cancer liquid biopsy. Extracellular vesicles are nanosized particles, primarily secreted by all cell types into body fluids such as blood and urine, and contain molecular cargos, i.e., lipids, proteins, and nucleic acids of original cells. Notably, the lipid bilayer-enclosed structure of extracellular vesicles protects their cargos from enzymatic degradation in the extracellular milieu. Proteins and nucleic acids of extracellular vesicles represent genetic alterations and molecular profiles of childhood cancer, thus serving as promising resources for precision medicine in cancer diagnosis, treatment monitoring, and prognosis prediction. This review evaluates the recent progress of extracellular vesicles as a liquid biopsy platform for various types of childhood cancer, discusses the mechanistic roles of molecular cargos in carcinogenesis and metastasis, and provides perspectives on extracellular vesicle-guided therapeutic intervention. Extracellular vesicle-based liquid biopsy for childhood cancer may ultimately contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongpak Pongphitcha
- Bangkok Child Health Center, Bangkok Hospital Headquarters, Bangkok 10130, Thailand;
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational Biosciences Center, Mahidol University, Nakon Pathom 73170, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Laboratory, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Liu Z, Liu Y, Li Y, Xu S, Wang Y, Zhu Y, Jiang C, Wang K, Zhang Y, Wang Y. ECM stiffness affects cargo sorting into MSC-EVs to regulate their secretion and uptake behaviors. J Nanobiotechnology 2024; 22:124. [PMID: 38515095 PMCID: PMC10956366 DOI: 10.1186/s12951-024-02411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have garnered extensive attention as natural product-based nanomedicines and potential drug delivery vehicles. However, the specific mechanism for regulating MSC-EVs secretion and delivery remains unclear. Here, we demonstrate that extracellular matrix (ECM) stiffness regulates the secretion and delivery of EVs by affecting MSCs' cargo sorting mechanically. Using multi-omics analysis, we found that a decrease in ECM stiffness impeded the sorting of vesicular transport-related proteins and autophagy-related lipids into MSC-EVs, impairing their secretion and subsequent uptake by macrophages. Hence, MSC-EVs with different secretion and uptake behaviors can be produced by changing the stiffness of culture substrates. This study provides new insights into MSC-EV biology and establishes a connection between MSC-EV behaviors and ECM from a biophysical perspective, providing a basis for the rational design of biomedical materials.
Collapse
Affiliation(s)
- Zhixiao Liu
- Department of Histology and Embryology, College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Li
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Sha Xu
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yang Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200086, China
| | - Yuruchen Zhu
- College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Chu Jiang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China.
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yue Wang
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China.
| |
Collapse
|
4
|
Rahman MM, Wang L, Rahman MM, Chen Y, Zhang W, Wang J, Lee LP, Wan Y. Rapid in situ mutation detection in extracellular vesicle-DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582068. [PMID: 38464277 PMCID: PMC10925088 DOI: 10.1101/2024.02.26.582068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A PCR- and sequencing-free mutation detection assay facilitates cancer diagnosis and reduces over-reliance on specialized equipment. This benefit was highlighted during the pandemic when high demand for viral nucleic acid testing often sidelined mutation analysis. This shift led to substantial challenges for patients on targeted therapy in tracking mutations. Here, we report a 30-minute DNA mutation detection technique using Cas12a-loaded liposomes in a microplate reader, a fundamental laboratory tool. CRISPR-Cas12a complex and fluorescence-quenching (FQ) probes are introduced into tumor-derived extracellular vesicles (EV) through membrane fusion. When CRISPR-RNA hybridizes with the DNA target, activated Cas12a can trans-cleave FQ probes, resulting in fluorescence signals for the quantification of DNA mutation. Future advancements in multiplex and high-throughput mutation detection using this assay will streamline self-diagnosis and treatment monitoring at home.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Lixue Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Md Motiar Rahman
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Wenlong Zhang
- Twist Bioscience Corporation, San Francisco, CA, USA
| | - Jing Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, Jiangsu, China
| | - Luke P Lee
- Harvard Medical School, Harvard University; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
5
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
6
|
Robado de Lope L, Sánchez‐Herrero E, Serna‐Blasco R, Provencio M, Romero A. Cancer as an infective disease: the role of EVs in tumorigenesis. Mol Oncol 2023; 17:390-406. [PMID: 36168102 PMCID: PMC9980310 DOI: 10.1002/1878-0261.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer is conventionally considered an evolutionary disease where tumor cells adapt to the environment and evolve eventually leading to the formation of metastasis through the seeding and growth of metastasis-initiating cells in distant organs. Tumor cell and tumor-stroma communication via soluble factors and extracellular vesicles (EVs) are essential for the success of the metastatic process. As the field of EVs advances, growing data support the role of tumor-derived EVs not only in modifying the microenvironment to facilitate tumor progression but also in inducing changes in cells outside the primary tumor that may lead to a malignant transformation. Thus, an alternative hypothesis has emerged suggesting the conceptualization of cancer as an 'infective' disease. Still, tackling EVs as a possible cancer treatment has not been widely explored. A major understanding is needed to unveil possible additional contributions of EVs in progression and metastasis, which may be essential for the development of novel approaches to treat cancer patients. Here, we review the contribution of EVs to cancer progression and the possible implication of these factors in the oncogenic transformation of indolent cells.
Collapse
Affiliation(s)
- Lucia Robado de Lope
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Estela Sánchez‐Herrero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Atrys HealthBarcelonaSpain
| | - Roberto Serna‐Blasco
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Mariano Provencio
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Atocha Romero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| |
Collapse
|
7
|
Wang J, Guo W, Wang X, Tang X, Sun X, Ren T. Circulating Exosomal PD-L1 at Initial Diagnosis Predicts Outcome and Survival of Patients with Osteosarcoma. Clin Cancer Res 2023; 29:659-666. [PMID: 36374561 DOI: 10.1158/1078-0432.ccr-22-2682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE It is difficult to predict prognosis of patients with osteosarcoma at initial diagnosis due to lack of efficient prognostic parameters. We evaluated the relationship between level of circulating serum exosomal PD-L1 (Sr-exosomal PD-L1) at initial diagnosis and oncologic outcome during the follow-up. EXPERIMENTAL DESIGN Sixty-seven patients with newly diagnosed osteosarcoma were prospectively recruited. Fasting blood was collected and exosome isolation was performed using ultracentrifugation method. Evaluation of Sr-exosomal PD-L1 was performed respectively by immunogold labeling and ELISA method. Correlation between level of Sr-exosomal PD-L1 at initial diagnosis and clinical risk factors was assessed. RESULTS Mean follow-up was 46.7 months. Two-year and 5-year overall survival (OS) rates were respectively 96.9% and 62.5%. Two-year and 5-year disease-free survival (DFS) rates were respectively 85.0% and 31.4%. Results revealed a significantly positive association between high PD-L1 cargo of circulating exosomes and clinicopathologic disease markers such as pulmonary metastasis, multiple metastasis, and death. Patients who died of disease at final follow-up had higher level of Sr-exosomal PD-L1 at initial diagnosis, which compared with patients who were still alive at last follow-up. Patients in group of ≥14.23 pg/mL Sr-exosomal PD-L1 at initial diagnosis had inferior DFS compared with patients in group of <14.23 pg/mL at initial diagnosis. Patients in group of ≥25.96 pg/mL at initial diagnosis had poor OS compared with patients in group of <25.96 pg/mL at initial diagnosis. CONCLUSIONS Use of liquid biopsy of circulating exosomal PD-L1 at initial diagnosis provides a robust means of predicting prognosis for patients with a newly diagnosed osteosarcoma.
Collapse
Affiliation(s)
- Jun Wang
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| | - Wei Guo
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| | - Xiaofang Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, P.R. China
| | - Xiaodong Tang
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| | - Xin Sun
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| | - Tingting Ren
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| |
Collapse
|
8
|
Yue J, Chen ZS, Xu XX, Li S. Functions and therapeutic potentials of exosomes in osteosarcoma. ACTA MATERIA MEDICA 2022; 1:552-562. [PMID: 36710945 PMCID: PMC9879305 DOI: 10.15212/amm-2022-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a primary malignant tumor of the skeleton with the morbidity of 2.5 in 1 million. The regularly on-set is in the epiphysis of the extremities with a high possibility of early metastasis, rapid progression, and poor prognosis. The survival rate of patients with metastatic or recurrent osteosarcoma remains low, and novel diagnostic and therapeutic methods are urgently needed. Exosomes are extracellular vesicles 30-150 nm in diameter secreted by various cells that are widely present in various body fluids. Exosomes are abundant in biologically active components such as proteins, nucleic acids, and lipids. Exosomes participate in numerous physiological and pathological processes via intercellular substance exchange and signaling. This review presents the novel findings of exosomes in osteosarcoma in diagnosis, prognosis, and therapeutic aspects.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, PR China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY,United States
| | - Xiang-Xi Xu
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, PR China
| |
Collapse
|
9
|
Stegmaier S, Sparber-Sauer M, Aakcha-Rudel E, Münch P, Reeh T, Feuchtgruber S, Hallmen E, Blattmann C, Bielack S, Klingebiel T, Koscielniak E. Fusion transcripts as liquid biopsy markers in alveolar rhabdomyosarcoma and synovial sarcoma: A report of the Cooperative Weichteilsarkom Studiengruppe (CWS). Pediatr Blood Cancer 2022; 69:e29652. [PMID: 35338758 DOI: 10.1002/pbc.29652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The possible application of gene fusion transcripts as tumor-specific noninvasive liquid biopsy biomarkers was investigated in blood plasma from patients with alveolar rhabdomyosarcoma (ARMS) and synovial sarcoma (SS). METHODS Patients entered in the CWS Soft-Tissue Sarcoma Registry (SoTiSaR) with tumors positive for fusion genes and available blood/plasma samples were included in our analysis. Cell-free exosomal RNA was extracted and used to detect PAX-FOXO1 or SYT-SSX fusion transcripts by reverse transcription quantitative PCR (RT-qPCR). RESULTS The analysis included 112 ethylene diamine tetraacetic acid blood samples from 80 patients (65 with ARMS, 15 with SS; 34 with localized, 46 with metastatic disease). For patients with metastatic ARMS, 62% (n = 18) of initial liquid biopsies were positive, and 16 (89%) of them showed initial bone marrow (BM) metastases. For all patients with primary localized ARMS, liquid biopsy was negative at diagnosis. Of the 48 plasma samples collected during therapy and follow-up, five were positive. None of the liquid biopsies from patients with SS were positive. CONCLUSIONS This liquid biopsy assay based on the detection of fusion transcripts in cell-free RNA from blood exosomes is suitable for analysis of patients with ARMS. Results showed good correlation with the initial tumor status; liquid biopsy was positive in 94% of patients with metastatic ARMS and initial BM involvement, whereas biopsies from all patients with localized tumors were negative. Prospective validation and optimization of the assay, as well as its application for other markers in diagnostics and monitoring of soft-tissue sarcoma, are ongoing.
Collapse
Affiliation(s)
- Sabine Stegmaier
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany
| | - Monika Sparber-Sauer
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Esther Aakcha-Rudel
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany
| | - Petra Münch
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany
| | - Theresa Reeh
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany
| | - Simone Feuchtgruber
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany
| | - Erika Hallmen
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany
| | - Claudia Blattmann
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany
| | - Stefan Bielack
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany.,Department of Pediatric Hematology and Oncology, University of Muenster, Muenster, Germany
| | - Thomas Klingebiel
- Department for Children and Adolescents, University Hospital of Frankfurt, Frankfurt/M, Germany
| | - Ewa Koscielniak
- Olgahospital, Zentrum für Kinder- Jugend und Frauenmedizin, Klinikum Stuttgart, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
10
|
The Prognostic Role of the C-Reactive Protein and Serum Lactate Dehydrogenase in a Pediatric Series of Bone Ewing Sarcoma. Cancers (Basel) 2022; 14:cancers14133064. [PMID: 35804835 PMCID: PMC9264769 DOI: 10.3390/cancers14133064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Ewing sarcoma is a rare and aggressive tumor of childhood and adolescence. Over the years, different prognostic factors have been explored to stratify high-risk patients. The roles of C-reactive protein (CRP) and serum lactate dehydrogenase (LDH) as potential new prognostic factors would be a useful and simple for risk stratification, but they have rarely been investigated. In our work, we analyze the role of LDH and CRP as prognostic factors in a population of pediatric and adolescent patients affected by Ewing sarcoma. Our study confirms the potential prognostic role of LDH at diagnosis as an independent prognostic factor. LDH evaluation is not expensive, and it can be beneficial for developing countries where diagnostic and staging resources in the pediatric oncology field are poor. Abstract Background: Ewing sarcoma (ES) is a rare and aggressive pediatric cancer. Numerous studies have attempted to identify new prognostic biomarkers. The predictive value of serum LDH and CRP has not been clearly described, to date. Methods: The objective of our retrospective study was to investigate the prognostic value of LDH and CRP levels and their association with overall survival in a series of ES patients. Results: Between 2004 and 2019, 89 ES patients were included. In a univariable analysis, high levels of LDH and CRP were associated with the worst prognosis. In a multivariable analysis, only higher LDH values remained associated with a lower survival. The high-LDH-level group experienced all 21 deaths registered in our population (24%) and about 90% of disease progressions. The 5-year overall survival was 66.4% in the high-LDH-level group, while no deaths were observed in the low-LDH-level group. The 5-year progression-free survival was 57.9% in the high-LDH-level group versus 80.4% in the low-LDH-level group. Conclusions: In our study, LDH levels at diagnosis were strongly correlated with the prognosis, and they might be considered a prognostic factor in Ewing sarcoma. The LDH value, along with its very low cost and its reproducibility in almost all centers, make it suitable as a potential prognostic biomarker in clinical practice.
Collapse
|
11
|
Li S. The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J Nanobiotechnology 2021; 19:277. [PMID: 34535153 PMCID: PMC8447529 DOI: 10.1186/s12951-021-01028-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare cancers accompanied by metastatic disease, mainly including osteosarcoma, Ewing sarcoma and chondrosarcoma. Extracellular vesicles (EVs) are membrane vesicles released by cells in the extracellular matrix, which carry important signal molecules, can stably and widely present in various body fluids, such as plasma, saliva and scalp fluid, spinal cord, breast milk, and urine liquid. EVs can transport almost all types of biologically active molecules (DNA, mRNA, microRNA (miRNA), proteins, metabolites, and even pharmacological compounds). In this review, we summarized the basic biological characteristics of EVs and focused on their application in bone sarcomas. EVs can be use as biomarker vehicles for diagnosis and prognosis in bone sarcomas. The role of EVs in bone sarcoma has been analyzed point-by-point. In the microenvironment of bone sarcoma, bone sarcoma cells, mesenchymal stem cells, immune cells, fibroblasts, osteoclasts, osteoblasts, and endothelial cells coexist and interact with each other. EVs play an important role in the communication between cells. Based on multiple functions in bone sarcoma, this review provides new ideas for the discovery of new therapeutic targets and new diagnostic analysis.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China.
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
12
|
Cheng S, Li Y, Yan H, Wen Y, Zhou X, Friedman L, Zeng Y. Advances in microfluidic extracellular vesicle analysis for cancer diagnostics. LAB ON A CHIP 2021; 21:3219-3243. [PMID: 34352059 PMCID: PMC8387453 DOI: 10.1039/d1lc00443c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) secreted by cells into the bloodstream and other bodily fluids, including exosomes, have been demonstrated to be a class of significant messengers that mediate intercellular communications. Tumor-derived extracellular vesicles are enriched in a selective set of biomolecules from original cells, including proteins, nucleic acids, and lipids, and thus offer a new perspective of liquid biopsy for cancer diagnosis and therapeutic monitoring. Owing to the heterogeneity of their biogenesis, physical properties, and molecular constituents, isolation and molecular characterization of EVs remain highly challenging. Microfluidics provides a disruptive platform for EV isolation and analysis owing to its inherent advantages to promote the development of new molecular and cellular sensing systems with improved sensitivity, specificity, spatial and temporal resolution, and throughput. This review summarizes the state-of-the-art advances in the development of microfluidic principles and devices for EV isolation and biophysical or biochemical characterization, in comparison to the conventional counterparts. We will also survey the progress in adapting the new microfluidic techniques to assess the emerging EV-associated biomarkers, mostly focused on proteins and nucleic acids, for clinical diagnosis and prognosis of cancer. Lastly, we will discuss the current challenges in the field of EV research and our outlook on future development of enabling microfluidic platforms for EV-based liquid biopsy.
Collapse
Affiliation(s)
- Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Dirks WG, Capes-Davis A, Eberth S, Fähnrich S, Wilting J, Nagel S, Steenpass L, Becker J. Cross contamination meets misclassification: Awakening of CHP-100 from sleeping beauty sleep-A reviewed model for Ewing's sarcoma. Int J Cancer 2021; 148:2608-2613. [PMID: 33460449 DOI: 10.1002/ijc.33474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
A human cell line of neuroblastic tissue, which was believed to have been lost to science due to its unavailability in public repositories, is revived and reclassified. In the 1970s, a triple set of neuroblastoma (NB) cell lines became available for research as MYCN-amplified vs nonamplified models (CHP-126/-134 and CHP-100, respectively). Confusingly, CHP-100 was used in subsequent years as a model for NB and, since the 1990s, as a model for neuroepithelioma and later as a model for Ewing's sarcoma (ES), which inevitably led to non-reproducible results. A deposit at a bioresource center revealed that globally available stocks of CHP-100 were identical to the prominent NB cell line IMR-32 and CHP-100 was included into the list of misidentified cell lines. Now we report on the rediscovery of an authentic CHP-100 cell line and provide evidence of incorrect classification during establishment. We show that CHP-100 cells carry a t(11;22)(q24;q12) type II EWSR1-FLI1 fusion and identify it as a classic ES. Although the question of whether CHP-100 was a virtual and never existing cell line from the beginning is now clarified, the results of all relevant publications should be considered questionable. Neither the time of the cross-contamination event with IMR-32 is known nor was the final classification as a model for Ewing family of tumors available with an associated short tandem repeat profile. After a long road of errors and confusion, authentic CHP-100 is now characterized as a type II EWSR1-FLI1 fusion model 44 years after its establishment.
Collapse
Affiliation(s)
- Wilhelm Gerhard Dirks
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Amanda Capes-Davis
- Cell Bank Australia, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Sonja Eberth
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Silke Fähnrich
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Stefan Nagel
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Laura Steenpass
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jürgen Becker
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Dong J, Zhang RY, Sun N, Hu J, Smalley MD, Zhou A, Yue H, Rothermich W, Chen M, Chen J, Ye J, Teng PC, Qi D, Toretsky JA, Tomlinson JS, Li M, Weiss PS, Jonas SJ, Federman N, Wu L, Zhao M, Tseng HR, Zhu Y. Coupling Nanostructured Microchips with Covalent Chemistry Enables Purification of Sarcoma-Derived Extracellular Vesicles for Downstream Functional Studies. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2003237. [PMID: 34220409 PMCID: PMC8248519 DOI: 10.1002/adfm.202003237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Indexed: 05/18/2023]
Abstract
Tumor-derived extracellular vesicles (EVs) play essential roles in intercellular communication during tumor growth and metastatic evolution. Currently, little is known about the possible roles of tumor-derived EVs in sarcoma because the lack of specific surface markers makes it technically challenging to purify sarcoma-derived EVs. In this study, a specific purification system is developed for Ewing sarcoma (ES)-derived EVs by coupling covalent chemistry-mediated EV capture/ release within a nanostructure-embedded microchip. The purification platform-ES-EV Click Chip-takes advantage of specific anti-LINGO-1 recognition and sensitive click chemistry-mediated EV capture, followed by disulfide cleavage-driven EV release. Since the device is capable of specific and efficient purification of intact ES EVs with high purity, ES-EV Click Chip is ideal for conducting downstream functional studies of ES EVs. Absolute quantification of the molecular hallmark of ES (i.e., EWS rearrangements) using reverse transcription Droplet Digital PCR enables specific quantification of ES EVs. The purified ES EVs can be internalized by recipient cells and transfer their mRNA cargoes, exhibiting their biological intactness and potential role as biological shuttles in intercellular communication.
Collapse
Affiliation(s)
- Jiantong Dong
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ryan Y Zhang
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Na Sun
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology David Geffen School of Medicine UCLA 650 Charles E Young Dr., Los Angeles, CA 90095, USA
| | - Matthew D Smalley
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Anqi Zhou
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Hua Yue
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Winston Rothermich
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Mengxiang Chen
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Jiayuan Chen
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Jinglei Ye
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Pai-Chi Teng
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Dongping Qi
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics Georgetown University 3970 Reservoir Rd NW, Washington, DC 20057, USA
| | - James S Tomlinson
- Department of Surgery UCLA 200 Medical Plaza, Los Angeles, CA 90024, USA
| | - Mengyuan Li
- Beijing National Laboratory for Molecular Sciences MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering College of Chemistry and Molecular Engineering Peking University 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Paul S Weiss
- California NanoSystems Institute Departments of Chemistry and Biochemistry Bioengineering, and Materials Science and Engineering UCLA 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Steven J Jonas
- Department of Pediatrics Ronald Reagan UCLA Medical Center UCLA Mattel Children's Hospital 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Noah Federman
- Department of Pediatrics Ronald Reagan UCLA Medical Center UCLA Mattel Children's Hospital 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Lily Wu
- Department of Molecular and Medical Pharmacology David Geffen School of Medicine UCLA 650 Charles E Young Dr., Los Angeles, CA 90095, USA
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering College of Chemistry and Molecular Engineering Peking University 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Hsian-Rong Tseng
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yazhen Zhu
- California NanoSystems Institute Crump Institute for Molecular Imaging Department of Molecular and Medical Pharmacology University of California Los Angeles (UCLA) 570 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
González ÁS. TUMORES PRIMARIOS DE LA COLUMNA VERTEBRAL: SOSPECHA, LINEAMIENTOS TERAPÉUTICOS Y NUEVAS TECNOLOGÍAS. REVISTA MÉDICA CLÍNICA LAS CONDES 2020. [DOI: 10.1016/j.rmclc.2020.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Ewing sarcoma family of tumors-derived small extracellular vesicle proteomics identify potential clinical biomarkers. Oncotarget 2020; 11:2995-3012. [PMID: 32821345 PMCID: PMC7415402 DOI: 10.18632/oncotarget.27678] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/20/2020] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Ewing Sarcoma Family of Tumors (ESFT), the second most common pediatric osseous malignancy, are characterized by the pathognomonic chromosomal EWS-ETS translocation. Outside of tumor biopsy, no clinically relevant ESFT biomarkers exist. Additionally, tumor burden assessment at diagnosis, monitoring of disease responsiveness to therapy, and detection of disease recurrence are limited to radiographic imaging. To identify new, clinically relevant biomarkers we evaluated the proteome of a subset of ESFT-derived small extracellular vesicles (sEVs). MATERIALS AND METHODS We performed the first high quality proteomic study of ESFT-derived sEVs from 5 ESFT cell lines representing the most common EWS-ETS fusion types and identified 619 proteins composing the core ESFT sEV proteome. We compared these core proteins to databases of common plasma-based proteins and sEV-associated proteins found within healthy plasma to identify proteins unique or enriched within ESFT. RESULTS From these analyses, two membrane bound proteins with biomarker potential were selected, CD99/MIC2 and NGFR, to develop a liquid-based assay enriching of ESFT-associated sEVs and detection of sEV mRNA cargo (i.e., EWS-ETS transcripts). We employed this immuno-enrichment approach to diagnosis of ESFT utilizing plasma (250 μl) from both localized and metastatic ESFT pediatric patients and cancer-free controls, and showed significant diagnostic power [AUC = 0.92, p = 0.001 for sEV numeration, with a PPV = 1.00, 95% CI = (0.63, 1.00) and a NPV = 0.67, 95% CI = (0.30, 0.93)]. CONCLUSIONS In this study, we demonstrate utilization of circulating ESFT-associated sEVs in pediatric patients as a source of minimally invasive diagnostic and potentially prognostic biomarkers.
Collapse
|
17
|
Thippabhotla S, Zhong C, He M. 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep 2019; 9:13012. [PMID: 31506601 PMCID: PMC6736862 DOI: 10.1038/s41598-019-49671-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
For studying cellular communications ex-vivo, a two-dimensional (2D) cell culture model is currently used as the “gold standard”. 2D culture models are also widely used in the study of RNA expression profiles from tumor cells secreted extracellular vesicles (EVs) for tumor biomarker discovery. Although the 2D culture system is simple and easily accessible, the culture environment is unable to represent in vivo extracellular matrix (ECM) microenvironment. Our study observed that 2D- culture derived EVs showed significantly different profiles in terms of secretion dynamics and essential signaling molecular contents (RNAs and DNAs), when compared to the three-dimensional (3D) culture derived EVs. By performing small RNA next-generation sequencing (NGS) analysis of cervical cancer cells and their EVs compared with cervical cancer patient plasma EV-derived small RNAs, we observed that 3D- culture derived EV small RNAs differ from their parent cell small RNA profile which may indicate a specific sorting process. Most importantly, the 3D- culture derived EV small RNA profile exhibited a much higher similarity (~96%) to in vivo circulating EVs derived from cervical cancer patient plasma. However, 2D- culture derived EV small RNA profile correlated better with only their parent cells cultured in 2D. On the other hand, DNA sequencing analysis suggests that culture and growth conditions do not affect the genomic information carried by EV secretion. This work also suggests that tackling EV molecular alterations secreted into interstitial fluids can provide an alternative, non-invasive approach for investigating 3D tissue behaviors at the molecular precision. This work could serve as a foundation for building precise models employed in mimicking in vivo tissue system with EVs as the molecular indicators or transporters. Such models could be used for investigating tumor biomarkers, drug screening, and understanding tumor progression and metastasis.
Collapse
Affiliation(s)
- Sirisha Thippabhotla
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas, 66045, USA.,Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Mei He
- Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045, USA. .,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, 66045, USA. .,Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, USA.
| |
Collapse
|
18
|
Charest-Morin R, Fisher CG, Sahgal A, Boriani S, Gokaslan ZL, Lazary A, Reynolds J, Bettegowda C, Rhines LD, Dea N. Primary Bone Tumor of the Spine-An Evolving Field: What a General Spine Surgeon Should Know. Global Spine J 2019; 9:108S-116S. [PMID: 31157142 PMCID: PMC6512194 DOI: 10.1177/2192568219828727] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
STUDY DESIGN A narrative review of the literature. OBJECTIVE This article reviews the general principles of treatment and investigation for primary bone tumors of the spine. Furthermore, it explores the emerging alternatives. METHODS A review was performed using Medline, Embase, and Cochrane databases. RESULTS Primary bone tumors of the spine are rare entities that general spine surgeons may encounter only a few times in their career. The treatment algorithm of these complex tumors is filled with nuances and is evolving constantly. For these reasons, patients should be referred to experienced tertiary or quaternary centers who can offer a comprehensive multidisciplinary approach. For most malignant spinal bone tumors, surgery remains the cornerstone of treatment. Respecting oncologic principles has been associated with improved survival and decreased local recurrence in multiple settings. However, even in experienced centers, these surgeries carry a significant risk of adverse events and possible long-term neurologic impairment. The associated morbidity of these procedures and the challenges of local recurrence have encouraged professionals caring for these patients to explore alternatives or adjuncts to surgical treatment. CONCLUSIONS Over the past few years, several advances have occurred in medical oncology, radiation oncology and interventional radiology, changing the treatment paradigm for some tumors. Other advances still need to be refined before being applied in a clinical setting.
Collapse
Affiliation(s)
- Raphaële Charest-Morin
- University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Charles G Fisher
- University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Arjun Sahgal
- Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | | | - Ziya L Gokaslan
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Rhode Island Hospital, Providence, RI, USA
- The Miriam Hospital, Providence, RI, USA
| | - Aron Lazary
- National Center for Spinal Disorders and Buda Health Center, Budapest, Hungary
| | | | | | | | - Nicolas Dea
- University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Masaoutis C, Korkolopoulou P, Theocharis S. Exosomes in sarcomas: Tiny messengers with broad implications in diagnosis, surveillance, prognosis and treatment. Cancer Lett 2019; 449:172-177. [PMID: 30779943 DOI: 10.1016/j.canlet.2019.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-secreted extracellular vesicles, which contain an array of biomolecules, such as proteins, mRNAs, microRNAs, and lipids, take part in intercellular communication and mediate tumor-host interactions. They are increasingly considered as a source of biomarkers for liquid biopsies as well as potential drug vectors. Sarcomas are rare malignant mesenchymal tumours and due to their relative rarity exosomes have not been investigated in as extensively as in epithelial malignancies. Nonetheless, valuable information has been gathered over the last years on the roles of exosomes in sarcomas. In the present review we summarize all relevant data obtained so far from cell lines, animal models and patients with emphasis on their potential clinical utility.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
20
|
Zhang P, Crow J, Lella D, Zhou X, Samuel G, Godwin AK, Zeng Y. Ultrasensitive quantification of tumor mRNAs in extracellular vesicles with an integrated microfluidic digital analysis chip. LAB ON A CHIP 2018; 18:3790-3801. [PMID: 30474100 PMCID: PMC6310142 DOI: 10.1039/c8lc01071d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) present a promising liquid biopsy for cancer diagnosis. However, it remains a daunting challenge to quantitatively measure molecular contents of EVs including tumor-associated mRNAs. Herein, we report a configurable microwell-patterned microfluidic digital analysis platform combined with a dual-probe hybridization assay for PCR-free, single-molecule detection of specific mRNAs in EVs. The microwell array in our device is configurable between the flow-through assay mode for enhanced hybridization capture and tagging of mRNAs and the digital detection mode based on femtoliter-scale enzymatic signal amplification for single-molecule counting of surface-bound targets. Furthermore, a dual-probe hybridization assay has been developed to enhance the sensitivity of the digital single-molecule detection of EV mRNAs. Combining the merits of the chip design and the dual-probe digital mRNA hybridization assay, the integrated microfluidic system has been demonstrated to afford quantitative detection of synthetic GAPDH mRNA with a LOD as low as 20 aM. Using this technology, we quantified the level of GAPDH and EWS-FLI1 mRNAs in EVs derived from two cell lines of peripheral primitive neuroectodermal tumor (PNET), CHLA-9 and CHLA-258. Our measurements detected 64.6 and 43.5 copies of GAPDH mRNA and 6.5 and 0.277 copies of EWS-FLI1 fusion transcripts per 105 EVs derived from CHLA-9 and CHLA-258 cells, respectively. To our knowledge, this is the first demonstration of quantitative measurement of EWS-FLI1 mRNA copy numbers in Ewing Sarcoma (EWS)-derived EVs. These results highlight the ultralow frequency of tumor-specific mRNA markers in EVs and the necessity of developing highly sensitive methods for analysis of EV mRNAs. The microfluidic digital mRNA analysis platform presented here would provide a useful tool to facilitate quantitative analysis of tumor-associated EV mRNAs for liquid biopsy-based cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry, University of Kansas, Lawrence, KS USA
| | - Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Divya Lella
- Department of Chemistry, University of Kansas, Lawrence, KS USA
| | - Xin Zhou
- Department of Chemistry, University of Kansas, Lawrence, KS USA
| | - Glenson Samuel
- Division of Hematology Oncology and Bone Marrow Transplantation, Children’s Mercy Hospitals & Clinics, Kansas City, MO, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, KS USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|