1
|
Hu JX, Chen YK, Chen SJ, Lin YY, Chen JN, Xie Y, Zhao CF, Chen CR. Mechanism of calcitonin gene related peptide against acute pancreatitis in rats by modulating amino acid metabolism based on metabonomics. Sci Rep 2025; 15:6686. [PMID: 39994332 PMCID: PMC11850807 DOI: 10.1038/s41598-025-87707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
To study the mechanism of calcitonin gene related peptide(CGRP) protecting acute pancreatitis based on metabolomics. 24 adult male rats were randomly divided into control group (Con), acute pancreatitis model group (AP), CGRP treatment group (CGRP + AP, abbreviated as CGRP) and CGRP antagonist(CGRP(8-37)) pretreatment group (preCGRP(8-37) + AP, abbreviated as CGRP37), with 6 rats in each group. After different interventions, pancreases of rats in each group were collected for pathological analysis, and serum was collected for metabolomics analysis. Pathological examination of the pancreas suggested that the inflammation of pancreatitis in AP group was significant, the inflammation of pancreatitis in CGRP group was significantly reduced, and the pancreatitis in CGRP37 group was aggravated. Metabolomics of rat serum suggested that the differences in metabolites in each group were mainly related to amino acid metabolism, coenzyme/vitamin metabolism, carbohydrate metabolism, lipid metabolism, digestive system and other metabolic pathways. According to the trend of metabolite changes, we found 6 differential metabolites that were significantly correlated with CGRP intervention, including L-Valine, 5-Aminopentanoic acid, 4-oxo-L-proline, L-glutamine, L-proline, and Ornithine, all of which were related to amino acid metabolism. CGRP can effectively protect acute pancreatitis, possibly by regulating amino acid metabolism to alleviate acute pancreatitis.
Collapse
Affiliation(s)
- Jian-Xiong Hu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Ying-Kai Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Shi-Jun Chen
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Yan-Ya Lin
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Jun-Nian Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350000, Fujian Province, China
| | - Ying Xie
- School of Mechanical, Electrical and Information Engineering, Putian University, Putian, China
| | - Cheng-Fei Zhao
- School of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Cun-Rong Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350000, Fujian Province, China.
| |
Collapse
|
2
|
Bi S, Wang M, Pu Q, Yang J, Jiang N, Zhao X, Qiu S, Liu R, Xu R, Li X, Hu C, Yang L, Gu J, Du D. Multi-MSIProcessor: Data Visualizing and Analysis Software for Spatial Metabolomics Research. Anal Chem 2024; 96:339-346. [PMID: 38102989 DOI: 10.1021/acs.analchem.3c04192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as a revolutionary analytical strategy in biomedical research for molecular visualization. By linking the characterization of functional metabolites with tissue architecture, it is now possible to reveal unknown biological functions of tissues. However, due to the complexity and high dimensionality of MSI data, mining bioinformatics-related peaks from batch MSI data sets and achieving complete spatially resolved metabolomics analysis remain a great challenge. Here, we propose novel MSI data processing software, Multi-MSIProcessor (MMP), which integrates the data read-in, MSI visualization, processed data preservation, and biomarker discovery functions. The MMP focuses on the AFADESI-MSI data platform but also supports mzXML and imzmL data input formats for compatibility with data generated by other MSI platforms such as MALDI/SIMS-MSI. MMP enables deep mining of batch MSI data and has flexible adaptability with the source code opened that welcomes new functions and personalized analysis strategies. Using multiple clinical biosamples with complex heterogeneity, we demonstrated that MMP can rapidly establish complete MSI analysis workflows, assess batch sample data quality, screen and annotate differential MS peaks, and obtain abnormal metabolic pathways. MMP provides a novel platform for spatial metabolomics analysis of multiple samples that could meet the diverse analysis requirements of scholars.
Collapse
Affiliation(s)
- Siwei Bi
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Manjiangcuo Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Qianlun Pu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Jinxi Yang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Na Jiang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyuan Qiu
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu,Sichuan 610041, China
| | - Ruiqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Renjie Xu
- Department of Respiratory Health West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xia Li
- West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lie Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu,Sichuan 610041, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| |
Collapse
|
3
|
Yang J, Wang M, Qiu Q, Huang Y, Wang Y, Pu Q, Jiang N, Wang R, Wen L, Zhang X, Han C, Du D. Time-Course Lipidomics of Ornithine-Induced Severe Acute Pancreatitis Model Reveals the Free Fatty Acids Centered Lipids Dysregulation Characteristics. Metabolites 2023; 13:993. [PMID: 37755273 PMCID: PMC10647642 DOI: 10.3390/metabo13090993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
The relationship between the type and intensities of lipids of blood and pancreas and the pathological changes in the pancreas during severe acute pancreatitis (SAP) remains unclear. In our study, we employed a rat model of SAP induced through intraperitoneal ornithine injections. We collected serum and pancreas samples at various time points (0-144 h) for histopathological and biochemical assessments, followed by lipidomic analyses using LC-MS/MS or in situ mass spectrometry imaging (MSI) To discern changes over time or at specific points, we employed time-course and univariate analyses for lipid screening, respectively. Our findings indicated that the peak inflammation in the Orn-SAP model occurred within the 24-30 h timeframe, with evident necrosis emerging from 24 h onwards, followed by regeneration starting at 48 h. Time-course analysis revealed an overall decrease in glycerophospholipids (PEs, PCs, LPEs, LPCs), while CEs exhibited an increase within the pancreas. Univariate analysis unveiled a significant reduction in serum TAGs containing 46-51 carbon atoms at 24 h, and CERs in the pancreas significantly increased at 30 h, compared with 0 h. Moreover, a substantial rise in TAGs containing 56-58 carbon atoms was observed at 144 h, both in serum and pancreas. MSI demonstrated the CERs containing saturated mono-acyl chains of 16 and 18 carbon atoms influenced pancreatic regeneration. Tracing the origin of FFAs hydrolyzed from pancreatic glycerophospholipids and serum TAGs during the early stages of inflammation, as well as FFAs utilized for CEs and CERs synthesis during the repair phase, may yield valuable strategies for diagnosing and managing SAP.
Collapse
Affiliation(s)
- Jinxi Yang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Manjiangcuo Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| | - Qi Qiu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Yan Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Yiqin Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Qianlun Pu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| | - Na Jiang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| | - Li Wen
- Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China;
| | - Xiaoying Zhang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| |
Collapse
|