1
|
Mlozen MM, Van Marwijk J, Wilhelmi BS, Whiteley C. Comparative Analysis of the Interaction of Silver Nanoparticles with Hexokinase from Trypanosoma brucei and Humans. Int J Nanomedicine 2023; 18:1399-1411. [PMID: 36992823 PMCID: PMC10041994 DOI: 10.2147/ijn.s401319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Background Regardless of the efforts to ease cases of human African trypanosomiasis (HAT), an increased number of cases get reported annually. This is because of drug resistant Trypanosoma brucei (Tb), the causative agent of the illness. This has renewed the need for creative methods to find new anti-trypanosomal drugs. The blood stream form (BSF) of the parasite depends exclusively on the glycolytic pathway for energy production while it is in the human host. Interruptions in this pathway efficiently kills the parasite. Trypanosoma brucei hexokinase (TbHK) is the first enzyme in glycolysis, and any effectors or inhibitors of TbHK would have potential as anti-trypanosomal agents. Methods TbHK and human glucokinase (hGCK) were over-expressed with a 6 histidine-tag in E. coli BL21(DE3) cells having the pRARE2 plasmid. Results TbHK had thermal and pH stability between 30°C and 55°C and 7.5 and 8.5, respectively, while hGCK exhibited thermal and pH stability between 30°C and 40°C and 7.0 and 8.0, respectively. Kinetically, TbHK had a Km of 39.3 µM, Vmax of 0.066 µmol.min-1.mL-1, kcat of 2.05 min-1 and kcat/Km of 0.0526 min-1.µmol-1. hGCK exhibited a Km of 4.5 µM, Vmax of 0.032 µnmol.min-1.mL-1, kcat of 11.25 min-1, and kcat/Km of 2.5 min-1.µmol-1. Interaction kinetic studies of silver nanoparticles (AgNPs) (0.1 µM) of average size of 6 nm with TbHK and hGCK were conducted. AgNPs selectively inhibited TbHK over hGCK. TbHK showed a non-competitive inhibition with a 50% and 28% decrease in Vmax, and kcat/km, respectively. HsGCK showed a 33% increase in affinity, 9% decrease in Vmax, and a 50% increase in enzyme efficiency. Conclusion The observed pattern of hGCK and AgNPs falls under the uncompetitive inhibition. The observed highly selective inhibitory effects of AgNPs between TbHK and hGCK may be used in development of new anti-trypanosomal drugs.
Collapse
Affiliation(s)
- Madalitso M Mlozen
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown), South Africa
- Malawi Adventist University, Malamulo Campus, Department of Biomedical Sciences, Makwasa, Malawi
- Correspondence: Madalitso M Mlozen, Malawi Adventist University, Malamulo campus, Department of Biomedical Sciences, P.O.Box 55, Makwasa, Tel +265 884628334, Email
| | - Jacqueline Van Marwijk
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown), South Africa
| | - Brendan Shane Wilhelmi
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown), South Africa
| | - Chris Whiteley
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown), South Africa
| |
Collapse
|
2
|
Ngay Lukusa I, Van Reet N, Mumba Ngoyi D, Miaka EM, Masumu J, Patient Pyana P, Mutombo W, Ngolo D, Kobo V, Akwaso F, Ilunga M, Kaninda L, Mutanda S, Muamba DM, Valverde Mordt O, Tarral A, Rembry S, Büscher P, Lejon V. Trypanosome SL-RNA detection in blood and cerebrospinal fluid to demonstrate active gambiense human African trypanosomiasis infection. PLoS Negl Trop Dis 2021; 15:e0009739. [PMID: 34534223 PMCID: PMC8480889 DOI: 10.1371/journal.pntd.0009739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/29/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background Spliced Leader (SL) trypanosome RNA is detectable only in the presence of live trypanosomes, is abundant and the Trypanozoon subgenus has a unique sequence. As previously shown in blood from Guinean human African trypanosomiasis (HAT) patients, SL-RNA is an accurate target for diagnosis. Detection of SL-RNA in the cerebrospinal fluid (CSF) has never been attempted. In a large group of Congolese gambiense HAT patients, the present study aims i) to confirm the sensitivity of SL-RNA detection in the blood and; ii) to assess the diagnostic performance of SL-RNA compared to trypanosome detection in CSF. Methodology/Principal findings Blood and CSF from 97 confirmed gambiense HAT patients from the Democratic Republic of Congo were collected using PAXgene blood RNA Tubes. Before RNA extraction, specimens were supplemented with internal extraction control RNA to monitor the extraction, which was performed with a PAXgene Blood RNA Kit. SL-RNA qPCR was carried out with and without reverse transcriptase to monitor DNA contamination. In blood, 92/97 (94.8%) HAT patients tested SL-RNA positive, which was significantly more than combined trypanosome detection in lymph and blood (78/97 positive, 80.4%, p = 0.001). Of 96 CSF RNA specimens, 65 (67.7%) were SL-RNA positive, but there was no significant difference between sensitivity of SL-RNA and trypanosome detection in CSF. The contribution of DNA to the Cq values was negligible. In CSF with normal cell counts, a fraction of SL-RNA might have been lost during extraction as indicated by higher internal extraction control Cq values. Conclusions/Significance Detection of SL-RNA in blood and CSF allows sensitive demonstration of active gambiense HAT infection, even if trypanosomes remain undetectable in blood or lymph. As this condition often occurs in treatment failures, SL-RNA detection in blood and CSF for early detection of relapses after treatment deserves further investigation. Trial registration This study was an integral part of the diagnostic trial "New Diagnostic Tools for Elimination of Sleeping Sickness and Clinical Trials: Early tests of Cure" (DiTECT-HAT-WP4, ClinicalTrials.gov Identifier: NCT03112655). Human African trypanosomiasis is a parasitic infection occurring in sub-Saharan Africa, which is fatal if left untreated. Diagnosis relies on demonstration of trypanosomes, which may occur at such low concentrations that they remain microscopically undetectable. Nucleic acid detection offers an alternative, in particular RNA, which is unstable and a better marker for live organisms than DNA. Trypanosomal SL-RNA detection in blood by reverse transcriptase quantitative PCR has hitherto only been tested twice. Although in cerebrospinal fluid, trypanosome presence indicates brain infection, SL-RNA detection has never been attempted. We evaluated sensitivity of SL-RNA detection in blood and cerebrospinal fluid. For each specimen, 2 controls were included: presence of genomic DNA contamination and efficacy of RNA extraction. Sensitivity of SL-RNA detection in blood was higher than of combined blood and lymph microscopy. In cerebrospinal fluid, SL-RNA and trypanosome detection had similar sensitivity. In a few specimens, traces of DNA were amplified. In some cerebrospinal fluids, some RNA was lost during extraction. Performing both internal controls is crucial, to ensure that negative SL-RNA cerebrospinal fluid findings are not due to a failed extraction and, in particular when testing treated patients, to differentiate live parasite RNA from reminiscent DNA.
Collapse
Affiliation(s)
- Ipos Ngay Lukusa
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medecine, Antwerp, Belgium
| | - Dieudonné Mumba Ngoyi
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Justin Masumu
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Pati Patient Pyana
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Wilfried Mutombo
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Digas Ngolo
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Vincent Kobo
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Felix Akwaso
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Médard Ilunga
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Lewis Kaninda
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Sylvain Mutanda
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Dieudonné Mpoyi Muamba
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | | | - Antoine Tarral
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Sandra Rembry
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medecine, Antwerp, Belgium
| | - Veerle Lejon
- Mixed Research Unit 177 Intertryp, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, University of Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
4
|
Kato CD, Nanteza A, Mugasa C, Edyelu A, Matovu E, Alibu VP. Clinical profiles, disease outcome and co-morbidities among T. b. rhodesiense sleeping sickness patients in Uganda. PLoS One 2015; 10:e0118370. [PMID: 25719539 PMCID: PMC4342333 DOI: 10.1371/journal.pone.0118370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The acute form of Human African Trypanosomiasis (HAT, also known as Sleeping sickness) caused by Trypanosoma brucei rhodesiense has been shown to have a wide spectrum of focus specific clinical presentation and severity in East and Southern Africa. Indeed HAT occurs in regions endemic for other tropical diseases, however data on how these co-morbidities might complicate the clinical picture and affect disease outcome remains largely scanty. We here describe the clinical presentation, presence of co-infections, and how the latter impact on HAT prognosis. METHODS AND FINDINGS We carried out a retrospective analysis of clinical data from 258 sleeping sickness patients reporting to Lwala hospital between 2005 and 2012. The mean patient age was 28.6 years with a significant number of cases below 18 years (p< 0.0001). About 93.4% of the cases were diagnosed as late stage (p< 0.0001). The case fatality rate was 10.5% with post treatment reactive encephalopathys reported in 7.9% of the cases, of whom 36.8% eventually died. Fever was significantly (p = 0.045) higher in patients under 18 years. Of the early stage patients, 26.7% and 6.7% presented with late stage signs of sleep disorder and mental confusion respectively. Among the co-infections, malaria was significantly more prevalent (28.9%; p< 0.0001) followed by urinary tract infections (4.2%). Co-infections were present in 14.3% of in-hospital deaths, 38.5% of which were recorded as Malaria. Malaria was significantly more common in patients under 18 years (45.5%; p< 0.02), and was reported in 60% of the fatal cases in this age group. CONCLUSIONS We show a wide spectrum of sleeping sickness clinical presentation and disease outcome that was apparently not significantly influenced by concurrent infections. It would thus be interesting to determine the host and/or parasite factors that might be responsible for the observed diverse clinical presentation.
Collapse
Affiliation(s)
- Charles D. Kato
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala Uganda
| | - Ann Nanteza
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala Uganda
| | - Claire Mugasa
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala Uganda
| | | | - Enock Matovu
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala Uganda
| | - Vincent P. Alibu
- College of Natural Sciences, Makerere University, Kampala Uganda
| |
Collapse
|
6
|
Abstract
Sleeping sickness describes two diseases, both fatal if left untreated: (i) Gambian sleeping sickness caused by Trypanosoma brucei gambiense, a chronic disease with average infection lasting around 3 years, and (ii) Rhodesian sleeping sickness caused by T. b. rhodesiense, an acute disease with death occurring within weeks of infection. Control of Gambian sleeping sickness is based on case detection and treatment involving serological screening, followed by diagnostic confirmation and staging. In stage I, patients can remain asymptomatic as trypanosomes multiply in tissues and body fluids; in stage II, trypanosomes cross the blood-brain barrier, enter the central nervous system and, if left untreated, death follows. Staging is crucial as it defines the treatment that is prescribed; for both forms of disease, stage II involves the use of the highly toxic drug melarsoprol or, in the case of Gambian sleeping sickness, the use of complex and very expensive drug regimes. Case detection of T. b. gambiense sleeping sickness is known to be inefficient but could be improved by the identification of parasites using molecular tools that are, as yet, rarely used in the field. Diagnostics are not such a problem in relation to T. b. rhodesiense sleeping sickness, but the high level of under-reporting of this disease suggests that current strategies, reliant on self-reporting, are inefficient. Sleeping sickness is one of the 'neglected tropical diseases' that attracts little attention from donors or policymakers. Proper quantification of the burden of sleeping sickness matters, as the primary reason for its 'neglect' is that the true impact of the disease is unknown, largely as a result of under-reporting. Certainly, elimination will not be achieved without vast improvements in field diagnostics for both forms of sleeping sickness especially if there is a hidden reservoir of 'chronic carriers'. Mass screening would be a desirable aim for Gambian sleeping sickness and could be handled on a national scale in the endemic countries - perhaps by piggybacking on programmes committed to other diseases. As well as improved diagnostics, the search for non-toxic drugs for stage II treatment should remain a research priority. There is good evidence that thorough active case finding is sufficient to control T. b. gambiense sleeping sickness, as there is no significant animal reservoir. Trypanosoma brucei rhodesiense sleeping sickness is a zoonosis and control involves interrupting the fly-animal-human cycle, so some form of tsetse control and chemotherapy of the animal reservoir must be involved. The restricted application of insecticide to cattle is the most promising, affordable and sustainable technique to have emerged for tsetse control. Animal health providers can aid disease control by treating cattle and, when allied with innovative methods of funding (e.g. public-private partnerships) not reliant on the public purse, this approach may prove more sustainable. Sleeping sickness incidence for the 36 endemic countries has shown a steady decline in recent years and we should take advantage of the apparent lull in incidence and aim for elimination. This is feasible in some sleeping sickness foci but must be planned and paid for increasingly by the endemic countries themselves. The control and elimination of T. b. gambiense sleeping sickness may be seen as a public good, as appropriate strategies depend on local health services for surveillance and treatment, but public-private funding mechanisms should not be excluded. It is timely to take up the tools available and invest in new tools - including novel financial instruments - to eliminate this disease from Africa.
Collapse
Affiliation(s)
- Susan C Welburn
- Division of Pathway Medicine and Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
7
|
Truc P, Tiouchichine ML, Cuny G, Vatunga G, Josenando T, Simo G, Herder S. Multiple infections of Trypanosoma brucei gambiense in blood and cerebrospinal fluid of human African trypanosomosis patients from Angola: Consequences on clinical course and treatment outcome. INFECTION GENETICS AND EVOLUTION 2012; 12:399-402. [DOI: 10.1016/j.meegid.2012.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
|