1
|
McCoy KD, Toty C, Dupraz M, Tornos J, Gamble A, Garnier R, Descamps S, Boulinier T. Climate change in the Arctic: Testing the poleward expansion of ticks and tick-borne diseases. GLOBAL CHANGE BIOLOGY 2023; 29:1729-1740. [PMID: 36700347 DOI: 10.1111/gcb.16617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Climate change is most strongly felt in the polar regions of the world, with significant impacts on the species that live there. The arrival of parasites and pathogens from more temperate areas may become a significant problem for these populations, but current observations of parasite presence often lack a historical reference of prior absence. Observations in the high Arctic of the seabird tick Ixodes uriae suggested that this species expanded poleward in the last two decades in relation to climate change. As this tick can have a direct impact on the breeding success of its seabird hosts and vectors several pathogens, including Lyme disease spirochaetes, understanding its invasion dynamics is essential for predicting its impact on polar seabird populations. Here, we use population genetic data and host serology to test the hypothesis that I. uriae recently expanded into Svalbard. Both black-legged kittiwakes (Rissa tridactyla) and thick-billed murres (Uria lomvia) were sampled for ticks and blood in Kongsfjorden, Spitsbergen. Ticks were genotyped using microsatellite markers and population genetic analyses were performed using data from 14 reference populations from across the tick's northern distribution. In contrast to predictions, the Spitsbergen population showed high genetic diversity and significant differentiation from reference populations, suggesting long-term isolation. Host serology also demonstrated a high exposure rate to Lyme disease spirochaetes (Bbsl). Targeted PCR and sequencing confirmed the presence of Borrelia garinii in a Spitsbergen tick, demonstrating the presence of Lyme disease bacteria in the high Arctic for the first time. Taken together, results contradict the notion that I. uriae has recently expanded into the high Arctic. Rather, this tick has likely been present for some time, maintaining relatively high population sizes and an endemic transmission cycle of Bbsl. Close future observations of population infestation/infection rates will now be necessary to relate epidemiological changes to ongoing climate modifications.
Collapse
Affiliation(s)
- Karen D McCoy
- MIVEGEC, Centre IRD, University of Montpellier CNRS IRD, Montpellier, France
| | - Céline Toty
- MIVEGEC, Centre IRD, University of Montpellier CNRS IRD, Montpellier, France
| | - Marlène Dupraz
- MIVEGEC, Centre IRD, University of Montpellier CNRS IRD, Montpellier, France
| | - Jérémy Tornos
- MIVEGEC, Centre IRD, University of Montpellier CNRS IRD, Montpellier, France
- CEFE, UMR 5175, University of Montpellier CNRS, Montpellier, France
| | - Amandine Gamble
- CEFE, UMR 5175, University of Montpellier CNRS, Montpellier, France
| | - Romain Garnier
- CEFE, UMR 5175, University of Montpellier CNRS, Montpellier, France
| | | | | |
Collapse
|
2
|
Wolcott KA, Margos G, Fingerle V, Becker NS. Host association of Borrelia burgdorferi sensu lato: A review. Ticks Tick Borne Dis 2021; 12:101766. [PMID: 34161868 DOI: 10.1016/j.ttbdis.2021.101766] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Borrelia burgdorferi sensu lato (Bbsl) is a bacterial species complex that includes the etiological agents of the most frequently reported vector-borne disease in the Northern hemisphere, Lyme borreliosis. It currently comprises > 20 named and proposed genospecies that use vertebrate hosts and tick vectors for transmission in the Americas and Eurasia. Host (and vector) associations influence geographic distribution and speciation in Bbsl, which is of particular relevance to human health. To target gaps in knowledge for future efforts to understand broad patterns of the Bbsl-tick-host system and how they relate to human health, the present review aims to give a comprehensive summary of the literature on host association in Bbsl. Of 465 papers consulted (404 after exclusion criteria were applied), 96 sought to experimentally establish reservoir competence of 143 vertebrate host species for Bbsl. We recognize xenodiagnosis as the strongest method used, however it is infrequent (20% of studies) probably due to difficulties in maintaining tick vectors and/or wild host species in the lab. Some well-established associations were not experimentally confirmed according to our definition (ex: Borrelia garinii, Ixodes uriae and sea birds). We conclude that our current knowledge on host association in Bbsl is mostly derived from a subset of host, vector and bacterial species involved, providing an incomplete knowledge of the physiology, ecology and evolutionary history of these interactions. More studies are needed on all host, vector and bacterial species globally involved with a focus on non-rodent hosts and Asian Bbsl complex species, especially with experimental research that uses xenodiagnosis and genomics to analyze existing host associations in different ecosystems.
Collapse
Affiliation(s)
- Katherine A Wolcott
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany; National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
Vanstreels RET, Palma RL, Mironov SV. Arthropod parasites of Antarctic and Subantarctic birds and pinnipeds: A review of host-parasite associations. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:275-290. [PMID: 33101906 PMCID: PMC7569742 DOI: 10.1016/j.ijppaw.2020.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 10/25/2022]
Abstract
Due to its cold and dry climate and scarcity of ice-free land, Antarctica has one of the most extreme environments on our planet. To survive in the Antarctic region, parasitic arthropods must either remain closely associated with their hosts throughout the entire life cycle or develop physiological adaptations to survive in the terrestrial habitat while their hosts are away foraging at sea or overwintering at lower latitudes. Forty-eight species of birds and seven species of pinnipeds breed in the Antarctic region, with 158 species/subspecies of parasitic arthropods recorded thus far, comprising: sucking lice (Echinophthiriidae), chewing lice (Menoponidae, Philopteridae), fleas (Ceratophyllidae, Pygiopsyllidae, Rhopalopsyllidae), pentastomes (Reighardiidae), hard ticks (Ixodidae), nest-associated haematophagous mites (Laelapidae), nasal mites (Halarachnidae, Rhinonyssidae) and feather mites (Alloptidae, Avenzoariidae, Xolalgidae, Freyanidae). In this review, we provide an updated compilation of the available information on the host-parasite associations of arthropods infesting birds and pinnipeds in the Antarctic region, and discuss some over-arching ecological patterns and gaps of knowledge.
Collapse
Affiliation(s)
| | - Ricardo L Palma
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Sergey V Mironov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
4
|
Norte AC, Lopes de Carvalho I, Núncio MS, Araújo PM, Matthysen E, Albino Ramos J, Sprong H, Heylen D. Getting under the birds' skin: tissue tropism of Borrelia burgdorferi s.l. in naturally and experimentally infected avian hosts. MICROBIAL ECOLOGY 2020; 79:756-769. [PMID: 31612324 DOI: 10.1007/s00248-019-01442-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Wild birds are frequently exposed to the zoonotic tick-borne bacteria Borrelia burgdorferi sensu lato (s.l.), and some bird species act as reservoirs for some Borrelia genospecies. Studying the tropism of Borrelia in the host, how it is sequestered in different organs, and whether it is maintained in circulation and/or in the host's skin is important to understand pathogenicity, infectivity to vector ticks and reservoir competency.We evaluated tissue dissemination of Borrelia in blackbirds (Turdus merula) and great tits (Parus major), naturally and experimentally infected with Borrelia genospecies from enzootic foci. We collected both minimally invasive biological samples (feathers, skin biopsies and blood) and skin, joint, brain and visceral tissues from necropsied birds. Infectiousness of the host was evaluated through xenodiagnoses and infection rates in fed and moulted ticks. Skin biopsies were the most reliable method for assessing avian hosts' Borrelia infectiousness, which was supported by the agreement of infection status results obtained from the analysis of chin and lore skin samples from necropsied birds and of their xenodiagnostic ticks, including a significant correlation between the estimated concentration of Borrelia genome copies in the skin and the Borrelia infection rate in the xenodiagnostic ticks. This confirms a dermatropism of Borrelia garinii, B. valaisiana and B. turdi in its avian hosts. However, time elapsed from exposure to Borrelia and interaction between host species and Borrelia genospecies may affect the reliability of skin biopsies. The blood was not useful to assess infectiousness of birds, even during the period of expected maximum spirochetaemia. From the tissues sampled (foot joint, liver, spleen, heart, kidney, gut and brain), Borrelia was detected only in the gut, which could be related with infection mode, genospecies competition, genospecies-specific seasonality and/or excretion processes.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.
- Centre for Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Isabel Lopes de Carvalho
- Centre for Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Maria Sofia Núncio
- Centre for Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Pedro Miguel Araújo
- Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jaime Albino Ramos
- Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), vhNational Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dieter Heylen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
5
|
|
6
|
Moon KL, Chown SL, Loh SM, Oskam CL, Fraser CI. Australian penguin ticks screened for novel Borrelia species. Ticks Tick Borne Dis 2017; 9:410-414. [PMID: 29275874 DOI: 10.1016/j.ttbdis.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Lyme borreliosis (or Lyme Disease) is an emerging threat to human health in the Northern Hemisphere caused by tick-borne bacteria from the Borrelia burgdorferi sensu lato (Bbsl) complex. Seabirds are important reservoir hosts of some members of the Bbsl complex in the Northern Hemisphere, and some evidence suggests this may be true of penguins in the Southern Hemisphere. While the Bbsl complex has not been detected in Australia, a novel Borrelia species ('Candidatus Borrelia tachyglossi') was recently sequenced from native ticks (Ixodes holocyclus and Bothriocroton concolor) parasitising echidnas (Tachyglossus aculeatus), suggesting unidentified borreliae may be circulating amongst native wildlife and their ticks. In the present study, we investigated whether ticks parasitising little penguins (Eudyptula novaehollandiae) harbour native or introduced Borrelia bacteria. We chose this penguin species because it is heavily exploited by ticks during the breeding season, lives in close proximity to other potential reservoir hosts (including native wildlife and migratory seabirds), and is known to be infected with other tick-borne pathogens (Babesia). We screened over 230 penguin ticks (Ixodes spp.) from colonies in south-eastern Australia, and found no evidence of Borrelia DNA. The apparent absence or rarity of the bacterium in south-eastern Australia has important implications for identifying potential tick-borne pathogens in an understudied region.
Collapse
Affiliation(s)
- Katherine L Moon
- Fenner School of Environment and Society, Australian National University, Acton, ACT 2601, Australia; School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Siew-May Loh
- Vector & Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Charlotte L Oskam
- Vector & Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Ceridwen I Fraser
- Fenner School of Environment and Society, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
7
|
Novel vagrant records and occurrence of vector-borne pathogens in King Penguins (Aptenodytes patagonicus) in South Africa. Polar Biol 2017. [DOI: 10.1007/s00300-017-2171-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Abstract
Blood parasites are considered some of the most significant pathogens for the conservation of penguins, due to the considerable morbidity and mortality they have been shown to produce in captive and wild populations of these birds. Parasites known to occur in the blood of penguins include haemosporidian protozoans (Plasmodium, Leucocytozoon, Haemoproteus), piroplamid protozoans (Babesia), kinetoplastid protozoans (Trypanosoma), spirochete bacteria (Borrelia) and nematode microfilariae. This review provides a critical and comprehensive assessment of the current knowledge on these parasites, providing an overview of their biology, host and geographic distribution, epidemiology, pathology and implications for public health and conservation.
Collapse
|
9
|
Cutler SJ, Ruzic-Sabljic E, Potkonjak A. Emerging borreliae - Expanding beyond Lyme borreliosis. Mol Cell Probes 2016; 31:22-27. [PMID: 27523487 DOI: 10.1016/j.mcp.2016.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
Lyme borreliosis (or Lyme disease) has become a virtual household term to the exclusion of other forgotten, emerging or re-emerging borreliae. We review current knowledge regarding these other borreliae, exploring their ecology, epidemiology and pathological potential, for example, for the newly described B. mayonii. These bacteria range from tick-borne, relapsing fever-inducing strains detected in some soft ticks, such as B. mvumii, to those from bat ticks resembling B. turicatae. Some of these emerging pathogens remain unnamed, such as the borrelial strains found in South African penguins and some African cattle ticks. Others, such as B. microti and unnamed Iranian strains, have not been recognised through a lack of discriminatory diagnostic methods. Technical improvements in phylogenetic methods have allowed the differentiation of B. merionesi from other borrelial species that co-circulate in the same region. Furthermore, we discuss members that challenge the existing dogma that Lyme disease-inducing strains are transmitted by hard ticks, whilst the relapsing fever-inducing spirochaetes are transmitted by soft ticks. Controversially, the genus has now been split with Lyme disease-associated members being transferred to Borreliella, whilst the relapsing fever species retain the Borrelia genus name. It took some 60 years for the correlation with clinical presentations now known as Lyme borreliosis to be attributed to their spirochaetal cause. Many of the borreliae discussed here are currently considered exotic curiosities, whilst others, such as B. miyamotoi, are emerging as significant causes of morbidity. To elucidate their role as potential pathogenic agents, we first need to recognise their presence through suitable diagnostic approaches.
Collapse
Affiliation(s)
| | - Eva Ruzic-Sabljic
- University of Ljubljana, Faculty of Medicine, Institute of Microbiology and Immunology, Ljubljana, Slovenia
| | - Aleksandar Potkonjak
- University of Novi Sad, Faculty of Agriculture, Department of Veterinary Medicine, Novi Sad, Serbia
| |
Collapse
|