1
|
Ngetich W, Gitau GK, Okumu TA, Aboge GO, Muasya D. Seroprevalence and risk factors associated with Theileria parva infection among calves in Narok County, Kenya. Vet World 2024; 17:620-629. [PMID: 38680144 PMCID: PMC11045520 DOI: 10.14202/vetworld.2024.620-629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim East Coast fever (ECF), caused by Theileria parva, is a devastating disease that causes significant economic losses to cattle production in sub-Saharan Africa. Prevention and control of ECF are challenging in pastoral settings due to inadequate epidemiological information. This study aimed to estimate the seroprevalence and risk factors associated with T. parva infection among calves in different production systems to help design appropriate control interventions. Materials and Methods Blood samples were collected from 318 calves and tested using an indirect enzyme-linked immunosorbent assay targeting antibodies against polymorphic immunodominant molecules found on the surface of T. parva. Information on calf characteristics and management practices was also collected during sampling. Descriptive statistics and logistic regression were used to analyze potential risk factors, such as age and acaricide application, where p < 0.05 was considered significant. Results Of the 318 calves sampled, 41 (12.89%) were positive for T. parva, with a higher proportion in pastoral systems (36.58%) than in mixed farming systems (34.10%) and agropastoral systems (29.27%). From univariate analysis, calf age (p = 0.002), body weight (p = 0.001), suckling status (p = 0.026), rectal temperature (p = 0.06), calves on pasture (p = 0.022), other feeds (p = 0.004), feed grown within the farm (p = 0.004), acaricide application (p = 0.001), and acaricide application frequency (p = 0.001) were significantly associated with seropositivity. However, calf age (odds ratio [OR], 0.96; 95% confidence interval [CI], 0.91-0.99; p = 0.04), other feeds (OR, 8.82; 95% CI, 1.74-44.63; p = 0.009), and suckling status (OR, 0.38; 95% CI, 0.15-0.99; p = 0.05) were significantly associated with T. parva infection in the multivariable mixed logistic model. Conclusion T. parva is circulating in young calves in the study area (and possibly in cattle populations due to maternal transfer of antibodies to the calves). There is a need for molecular surveillance to determine the presence and burden of T. parva infection.
Collapse
Affiliation(s)
- Wyckliff Ngetich
- Department of Clinical Studies, University of Nairobi, P.O Box 29053-00625, Kangemi, Nairobi
- Department of Veterinary Surgery, Theriogenology and Medicine, Egerton University, P.O Box 536-20115, Egerton, Kenya
| | - George Karuoya Gitau
- Department of Clinical Studies, University of Nairobi, P.O Box 29053-00625, Kangemi, Nairobi
| | - Tequiero Abuom Okumu
- Department of Clinical Studies, University of Nairobi, P.O Box 29053-00625, Kangemi, Nairobi
| | - Gabriel Oluga Aboge
- Department of Public Health, Pharmacology and Toxicology, University of Nairobi, P.O Box 29053-00625, Kangemi, Nairobi
| | - Daniel Muasya
- Department of Clinical Studies, University of Nairobi, P.O Box 29053-00625, Kangemi, Nairobi
| |
Collapse
|
2
|
East Coast Fever Carrier Status and Theileria parva Breakthrough Strains in Recently ITM Vaccinated and Non-Vaccinated Cattle in Iganga District, Eastern Uganda. Pathogens 2023; 12:pathogens12020295. [PMID: 36839567 PMCID: PMC9965312 DOI: 10.3390/pathogens12020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
East Coast fever (ECF) is a tick-borne disease of cattle that hinders the development of the livestock industry in eastern, central and southern Africa. The 'Muguga cocktail' live vaccine, delivered by an infection and treatment method (ITM), remains the only immunisation strategy of controlling ECF. However, there are challenges of the live vaccine inducing ECF carrier status in immunised animals and the possibility of lack of protection from parasite strains that are antigenically different from the vaccine strains. In Uganda, there are insufficient data regarding the ECF carrier status and T. parva genetic diversity in vaccinated and associated non-vaccinated cattle to assess the effectiveness of ITM vaccination. Blood was collected from recently ECF vaccinated (98) and non-vaccinated (73) cattle from Iganga district in Eastern Uganda at 120 days post-vaccination. The p104 gene nested PCR was used to screen for T. parva DNA, 11 minisatellite and 3 microsatellite markers (SSR) were used for genotyping. Two minisatellite markers (MS7 and MS19) were used to determine whether ECF carrier status was due to the T. parva vaccine or local strains. The prevalence of T. parva based on p104 nPCR was 61.2% (60/98) (RR 2.234, 95% CI 1.49-3.35, p-value < 0.001) among recently vaccinated cattle and 27.4% (20/73) (RR 1.00) among associated non-vaccinated cattle. The Muguga cocktail vaccine strains were responsible for carrier status in 10 (58.8%) by MS7 and 11 (64.7%) by MS19 in vaccinated cattle. Genotypes of T. parva with different-sized alleles to the vaccine strains that could be potential 'breakthroughs' were detected in 2 (11.8%)) and 4 (23.5%) isolates from vaccinated cattle based on MS7 and MS19 minisatellite markers, respectively. Using 14 SSR markers, T. parva diversity was higher in vaccinated (Na = 2.214, Ne = 1.978, He = 0.465) than associated non-vaccinated (Na = 1.071, Ne = 1.048, He = 0.259) cattle. The principal component analysis (PCA) showed isolates from vaccinated cattle were closely related to those from non-vaccinated cattle. The analysis of molecular variance (AMOVA) revealed high genetic variation (96%) within T. parva isolates from vaccinated and non-vaccinated cattle but low variation (4%) between vaccinated and non-vaccinated cattle. This study reveals the role of ITM in inducing the carrier status and higher T. parva genetic diversity in vaccinated cattle. The low genetic variation between T. parva isolates in both vaccinated and non-vaccinated cattle may be suggestive of the protective role of vaccine strains against genetically related local strains in the study area.
Collapse
|
3
|
Tawana M, Onyiche TE, Ramatla T, Mtshali S, Thekisoe O. Epidemiology of Ticks and Tick-Borne Pathogens in Domestic Ruminants across Southern African Development Community (SADC) Region from 1980 until 2021: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11080929. [PMID: 36015049 PMCID: PMC9414594 DOI: 10.3390/pathogens11080929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ticks are hematophagous ectoparasites that are capable of infesting a wide range of mammals, including domestic animals, ruminants, wildlife, and humans across the world, and they transmit disease-causing pathogens. Numerous individual epidemiological studies have been conducted on the distribution and prevalence of ticks and tick-borne diseases (TBDs) in the Southern African Developing Community (SADC) region, but no effort has been undertaken to synchronize findings, which would be helpful in the implementation of consolidated tick control measures. With the aim of generating consolidated pooled prevalence estimates of ticks and TBDs in the SADC region, we performed a systematic review and meta-analysis of published articles using the PRISMA 2020 guidelines. A deep search was performed on five electronic databases, namely, PubMed, ScienceDirect, Google Scholar, AJOL, and Springer Link. Of the 347 articles identified, only 61 of the articles were eligible for inclusion. In total, 18,355 tick specimens were collected, belonging to the genera Amblyomma, Haemaphysalis, Hyalomma, and Rhipicephalus (including Boophilus) across several countries, including South Africa (n = 8), Tanzania (n = 3), Zambia (n = 2), Zimbabwe (n = 2), Madagascar (n = 2), Angola (n = 2), Mozambique (n = 1), and Comoros (n = 1). The overall pooled prevalence estimate (PPE) of TBPs in livestock was 52.2%, with the highest PPE in cattle [51.2%], followed by sheep [45.4%], and goats [29.9%]. For bacteria-like and rickettsial TBPs, Anaplasma marginale had the highest PPE of 45.9%, followed by A. centrale [14.7%], A. phagocytophilum [2.52%], and A. bovis [0.88%], whilst Ehrlichia ruminantium had a PPE of 4.2%. For piroplasmids, Babesia bigemina and B. bovis had PPEs of 20.8% and 20.3%, respectively. Theileria velifera had the highest PPE of 43.0%, followed by T. mutans [29.1%], T. parva [25.0%], and other Theileria spp. [14.06%]. Findings from this study suggest the need for a consolidated scientific approach in the investigation of ticks, TBPs, and TBDs in the whole SADC region, as most of the TBDs are transboundary and require a regional control strategy.
Collapse
Affiliation(s)
- Mpho Tawana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - ThankGod E. Onyiche
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, Maiduguri 600230, Nigeria
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
- Correspondence: ; Tel.: +27-18-299-2521
| | - Sibusiso Mtshali
- Foundational Research and Services, South African National Biodiversity Institute, National Zoological Gardens, Pretoria 0001, South Africa
- University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
4
|
Allan FK, Peters AR. Safety and Efficacy of the East Coast Fever Muguga Cocktail Vaccine: A Systematic Review. Vaccines (Basel) 2021; 9:vaccines9111318. [PMID: 34835249 PMCID: PMC8623010 DOI: 10.3390/vaccines9111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/04/2022] Open
Abstract
Immunisation of livestock with high quality vaccines is considered an essential approach to controlling many animal diseases. The only currently available commercial vaccine to protect cattle from East Coast fever (ECF), a tick-borne disease caused by Theileria parva, is an unconventional “infection and treatment method” (ITM) involving administration of a combination of live T. parva isolates, referred to as the “Muguga cocktail”, and simultaneous treatment with long-acting oxytetracycline. Veterinary vaccine research and development typically involves studies designed to demonstrate vaccine quality, safety, and efficacy; however, as there were no such purpose-designed registration studies conducted for the Muguga cocktail, evidence for safety and efficacy is solely based on that which is available in the clinical literature. An extensive systematic review was conducted to analyse the evidence available in the literature in order to establish the safety and efficacy of the Muguga cocktail vaccine. A combination of meta-analyses and narrative summaries was conducted. A total of 61 studies met the criteria to be included in the systematic review. The majority of studies demonstrated or reported in favour of the vaccine with regards to safety and efficacy of the Muguga cocktail vaccine. Proximity to buffalo often resulted in reduced vaccine efficacy, and reports of shed and transmission of vaccine components affected the overall interpretation of safety. Better understanding of control options for this devastating livestock disease is important for policymakers and livestock keepers, enabling them to make informed decisions with regards to the health of their animals and their livelihoods.
Collapse
|
5
|
Allan FK, Sindoya E, Adam KE, Byamungu M, Lea RS, Lord JS, Mbata G, Paxton E, Mramba F, Torr SJ, Morrison WI, Handel I, Morrison LJ, Auty HK. A cross-sectional survey to establish Theileria parva prevalence and vector control at the wildlife-livestock interface, Northern Tanzania. Prev Vet Med 2021; 196:105491. [PMID: 34562810 PMCID: PMC8573586 DOI: 10.1016/j.prevetmed.2021.105491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
East Coast fever (ECF) in cattle is caused by the protozoan parasite Theileria parva, transmitted by Rhipicephalus appendiculatus ticks. In cattle ECF is often fatal, causing annual losses >$500 million across its range. The African buffalo (Syncerus caffer) is the natural host for T. parva but the transmission dynamics between wild hosts and livestock are poorly understood. This study aimed to determine the prevalence of T. parva in cattle, in a 30 km zone adjacent to the Serengeti National Park, Tanzania where livestock and buffalo co-exist, and to ascertain how livestock keepers controlled ECF and other vector-borne diseases of cattle. A randomised cross-sectional cattle survey and questionnaire of vector control practices were conducted. Blood samples were collected from 770 cattle from 48 herds and analysed by PCR to establish T. parva prevalence. Half body tick counts were recorded on every animal. Farmers were interviewed (n = 120; including the blood sampled herds) using a standardised questionnaire to obtain data on vector control practices. Local workshops were held to discuss findings and validate results. Overall prevalence of T. parva in cattle was 5.07% (CI: 3.70-7.00%), with significantly higher prevalence in older animals. Although all farmers reported seeing ticks on their cattle, tick counts were very low with 78% cattle having none. Questionnaire analysis indicated significant acaricide use with 79% and 41% of farmers reporting spraying or dipping with cypermethrin-based insecticides, respectively. Some farmers reported very frequent spraying, as often as every four days. However, doses per animal were often insufficient. These data indicate high levels of acaricide use, which may be responsible for the low observed tick burdens and low ECF prevalence. This vector control is farmer-led and aimed at both tick- and tsetse-borne diseases of livestock. The levels of acaricide use raise concerns regarding sustainability; resistance development is a risk, particularly in ticks. Integrating vaccination as part of this community-based disease control may alleviate acaricide dependence, but increased understanding of the Theileria strains circulating in wildlife-livestock interface areas is required to establish the potential benefits of vaccination.
Collapse
Affiliation(s)
- Fiona K Allan
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
| | - Emmanuel Sindoya
- Minstry of Livestock and Fisheries, Serengeti District Livestock Office, Mugumu, Tanzania
| | - Katherine E Adam
- Innogen Institute, Science Technology and Innovation Studies; School of Social and Political Science, University of Edinburgh, Old Surgeons' Hall, High School Yards, Edinburgh, United Kingdom
| | | | - Rachel S Lea
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jennifer S Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Geofrey Mbata
- Vector and Vector-borne Diseases Research Institute, Tanga, Tanzania
| | - Edith Paxton
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Furaha Mramba
- Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Stephen J Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - W Ivan Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Ian Handel
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Harriet K Auty
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, United Kingdom (Previously Epidemiology Research Unit, SRUC, Inverness, United Kingdom)
| |
Collapse
|
6
|
Bishop RP, Odongo D, Ahmed J, Mwamuye M, Fry LM, Knowles DP, Nanteza A, Lubega G, Gwakisa P, Clausen PH, Obara I. A review of recent research on Theileria parva: Implications for the infection and treatment vaccination method for control of East Coast fever. Transbound Emerg Dis 2020; 67 Suppl 1:56-67. [PMID: 32174044 DOI: 10.1111/tbed.13325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022]
Abstract
The infection and treatment (ITM) live vaccination method for control of Theileria parva infection in cattle is increasingly being adopted, particularly in Maasai pastoralist systems. Several studies indicate positive impacts on human livelihoods. Importantly, the first detailed protocol for live vaccine production at scale has recently been published. However, quality control and delivery issues constrain vaccination sustainability and deployment. There is evidence that the distribution of T. parva is spreading from endemic areas in East Africa, North into Southern Sudan and West into Cameroon, probably as a result of anthropogenic movement of cattle. It has also recently been demonstrated that in Kenya, T. parva derived from cape buffalo can 'breakthrough' the immunity induced by ITM. However, in Tanzania, breakthrough has not been reported in areas where cattle co-graze with buffalo. It has been confirmed that buffalo in northern Uganda national parks are not infected with T. parva and R. appendiculatus appears to be absent, raising issues regarding vector distribution. Recently, there have been multiple field population genetic studies using variable number tandem repeat (VNTR) sequences and sequencing of antigen genes encoding targets of CD8+ T-cell responses. The VNTR markers generally reveal high levels of diversity. The antigen gene sequences present within the trivalent Muguga cocktail are relatively conserved among cattle transmissible T. parva populations. By contrast, greater genetic diversity is present in antigen genes from T. parva of buffalo origin. There is also evidence from several studies for transmission of components of stocks present within the Muguga cocktail, into field ticks and cattle following induction of a carrier state by immunization. In the short term, this may increase live vaccine effectiveness, through a more homogeneous challenge, but the long-term consequences are unknown.
Collapse
Affiliation(s)
- Richard P Bishop
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, USA
| | - David Odongo
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Jabbar Ahmed
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Micky Mwamuye
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lindsay M Fry
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, USA.,Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, USA
| | - Donald P Knowles
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, USA
| | - Anne Nanteza
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - George Lubega
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Paul Gwakisa
- Genome Science Laboratory, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Peter-Henning Clausen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Isaiah Obara
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Gwakisa P, Kindoro F, Mwega E, Kimera S, Obara I, Ahmed J, Clausen PH, Bishop R. Monitoring vaccinated cattle for induction and longevity of persistent tick-transmissible infection: Implications for wider deployment of live vaccination against East Coast fever in Tanzania. Transbound Emerg Dis 2020; 67 Suppl 1:79-87. [PMID: 32174035 DOI: 10.1111/tbed.13405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/30/2019] [Accepted: 10/19/2019] [Indexed: 11/29/2022]
Abstract
The infection and treatment (ITM) procedure remains the only available method of immunization against Theileria parva infection. One constraint to deployment is the perception that the carrier state induced by ITM could result in enhanced disease problems. More than one million cattle have been ITM vaccinated in pastoralist systems in Tanzania over the last 2 decades. We present the results of a longitudinal study of six groups of cattle in Maasai villages in northern Tanzania exposed to natural tick challenge for between 2 weeks and 14 years post-vaccination. The p104 nested PCR revealed a higher frequency of T. parva carriers among vaccinates (30%) compared with controls (8%) (OR = 4.89, p = .000), with the highest frequency of carriers found in calves vaccinated 6 months previously, although carrier state was also detected in cattle vaccinated >10 years prior to the study. Variable number tandem repeat genotype analysis revealed 6 MS7 alleles with sizes ranging from 150 bp to 500 bp, but only two alleles were detected in cattle vaccinated >4 years earlier, relative to five alleles detected in recently vaccinated cattle and controls. In terms of heterozygosity, diversity was maximal in calves vaccinated within the last 2 weeks (h = 0.776) but lowest in cattle vaccinated 4 years earlier (h = 0.375). The analysis suggested close genetic relatedness of parasites in vaccinated and unvaccinated groups and up to 96% of variation was within rather than between the groups. These results confirm that ITM leads to a long-term T. parva carrier state in cattle and the detection of vaccine component VNTR in co-grazing unvaccinated cattle suggests potential vaccine transmission by ticks. However, vaccination stocks did not totally replace local genotypes, at least in cattle populations. These findings should mitigate concerns that ITM modifies T. parva field populations in a way that enhances disease in the medium term.
Collapse
Affiliation(s)
- Paul Gwakisa
- Genome Science laboratory, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Fatuma Kindoro
- Genome Science laboratory, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Elisa Mwega
- Genome Science laboratory, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Sharadhuli Kimera
- Genome Science laboratory, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Isaiah Obara
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jabbar Ahmed
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Peter-Henning Clausen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard Bishop
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
Magulu E, Kindoro F, Mwega E, Kimera S, Shirima G, Gwakisa P. Detection of carrier state and genetic diversity of Theileria parva in ECF-vaccinated and naturally exposed cattle in Tanzania. Vet Parasitol Reg Stud Reports 2019; 17:100312. [PMID: 31303233 DOI: 10.1016/j.vprsr.2019.100312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Infection and Treatment Method (ITM) has been practiced in Tanzania for over 20 years as a prevention measure against East Coast Fever disease. It is known that ITM, like natural ECF infection, leads to a carrier state, whereby vaccinated cattle become asymptomatic carriers of the parasite. It is expected that ECF vaccination using ITM also leads to generation of combinations of vaccine specific Theileria parva and local strains that circulate in the field what contributes to an unknown level of parasite diversity. Moreover, the long term impact of ITM on carrier state and parasite diversity in cattle are largely unknown. To address this question blood was collected from ECF-vaccinated (n = 239) and unvaccinated (n = 97) cattle from Loiborsoit, Emboreet, Esilalei, Manyara ranch and Mswakini villages in the Maasai steppe of northern Tanzania, as well as Mruazi and Leila farms in Tanga in eastern Tanzania. Screening for T. parva using nested PCR revealed an overall prevalence of T. parva to be 34.5%, with a significant higher prevalence among ECF-vaccinated cattle. Using three VNTR markers (ms2, ms5 and MS7) higher parasite genetic diversity in terms of higher number of alleles and expected heterozygosity was shown in vaccinated than unvaccinated cattle. These parameters were highest in cattle from Manyara ranch. Nevertheless, the principle component analysis (PCoA) showed no distinct clustering patterns as most T. parva alleles clustered together throughout the four quadrants implying parasite homogeneity among the sampled populations. However, some of the parasite alleles closely clustered with Muguga vaccine alleles in two of the quadrants, consistent with closer genetic relatedness between the vaccine strains and the T. parva populations from the Maasai steppe. Likewise analysis of molecular variance (AMOVA) revealed most of the genetic variation (93%) being contained within populations with only 7% being among populations. This study therefore confirms the role of ECF vaccination in enhancing carrier state and T. parva diversity in vaccinated cattle populations. Higher T. parva diversity may play an important role in carrier cattle by way of restricting breakthrough infections from field parasite strains.
Collapse
Affiliation(s)
- Emelesiana Magulu
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Fatuma Kindoro
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Elisa Mwega
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Sharadhuli Kimera
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Gabriel Shirima
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Paul Gwakisa
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania.
| |
Collapse
|
9
|
Kerario II, Simuunza M, Laisser ELK, Chenyambuga S. Exploring knowledge and management practices on ticks and tick-borne diseases among agro-pastoral communities in Southern Highlands, Tanzania. Vet World 2018; 11:48-57. [PMID: 29479157 PMCID: PMC5813511 DOI: 10.14202/vetworld.2018.48-57] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022] Open
Abstract
Aim The current study was conducted to assess the farmers' knowledge and management practices on ticks and tick-borne diseases (TBDs) through individual interview using a structured questionnaire in Mbarali and Momba districts of Mbeya region. Materials and Methods A total of 240 households, 120 from each district were asked to mention TBDs of cattle which they thought were the most important in their localities and period of the year when the diseases occurred more frequently. In addition, farmers were asked to describe clinical signs and management practices associated with the common TBDs that they knew. Results The majority of respondents (46.2%) reported that East Coast fever (ECF) was the most important disease of cattle in the region, followed by anaplasmosis (33.8%), heartwater (15.4%), and babesiosis (4.6%). According to the farmers, ECF and anaplasmosis occurred more frequently during the dry season, while babesiosis and heartwater occurred more frequently during the rainy season. The majority of farmers were able to describe properly the signs of the common TBDs. Most farmers (80.4%) reported that they used acaricide to control ticks at a frequency of after every 2 weeks and a small proportion (15.8%) vaccinated their animals against ECF. Conclusion It can be concluded that farmers in Mbeya have considerable knowledge on tick species and clinical signs of TBDs affecting their cattle. Based on the findings of the current study, it is recommended that integrated approach to the control of ticks and TBDs be adopted in the study area and many other areas that utilize agro-pastoral and pastoral cattle production systems.
Collapse
Affiliation(s)
- Isack Ibrahim Kerario
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia.,Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture P.O. Box 3004, Morogoro, Tanzania
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Emmanuel L K Laisser
- School Quality Assurance Department, Eastern Zone, Ministry of Education, Science and Technology, P.O. Box 325, Morogoro, Tanzania
| | - Sebastian Chenyambuga
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture P.O. Box 3004, Morogoro, Tanzania
| |
Collapse
|
10
|
Kimaro EG, Mor SM, Gwakisa P, Toribio JA. Seasonal occurrence of Theileria parva infection and management practices amongst Maasai pastoralist communities in Monduli District, Northern Tanzania. Vet Parasitol 2017; 246:43-52. [PMID: 28969779 DOI: 10.1016/j.vetpar.2017.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 11/28/2022]
Abstract
Theileria parva causes an economically devastating tick-borne disease called East Coast fever (ECF), which affects cattle in central, eastern and southern Africa. Determination of seasonal infection rates for T. parva is crucial for epidemiological understanding and for strengthening ECF management practices. However, this information is lacking for most pastoralist areas with high livestock density, such as the Monduli District in the Maasai steppe, northern Tanzania. A cross-sectional study was carried out to estimate the prevalence of T. parva in wet and dry seasons, and to assess understanding of management practices associated with T. parva amongst pastoralists' cattle. A total of 960 cattle owned by 130 pastoralists were randomly selected from ten study villages in each season and blood samples analysed for T. parva prevalence using a nested polymerase chain reaction (PCR). Seroprevalence for T. parva in the wet season was assessed using an enzyme-linked-immunosorbent assay (ELISA). Information on relevant management practices was gathered using a standardized questionnaire. Multivariable logistic regression was used to evaluate the association between T. parva parasitaemia and animal, farm and village-level factors. The prevalence of T. parva parasitaemia was 15.9% (95% CI=0.13-0.19) and 31.6% (95% CI=0.28-0.36) in wet and dry seasons, respectively. All cattle were sero-positive. T. parva parasitaemia was significantly associated with age of the animal, sampling season, and study village. All 130 cattle owners interviewed (100%) reported that they could easily recognise ECF and the vast majority (97.7%) identified swollen lymph nodes as the most prominent sign. At least 70% reported to understand the involvement of R. appendiculatus in ECF transmission. The use of both commercial drugs and herbal medicines for ECF treatment was reported by 54.6% of cattle owners. Among commercial drugs reported, the most commonly used was alamycin 300mg/ml (oxytetracycline dehydrates). Tick control by hand spraying was reported by the majority (90.8%) of cattle owners and less than half (45.4%) reported to vaccinate their cattle. This research provides evidence of widespread T. parva infection across Monduli District, and baseline information on seasonal occurrence. This information can assist the planning of more appropriate control strategies in pastoralist communities both now and into the future as predicted climatic changes progress in the region and potentially influence ECF occurrence and transmission.
Collapse
Affiliation(s)
- Esther G Kimaro
- School of Veterinary Science, Faculty of Science, The University of Sydney, Australia; Tropical Pesticides Research Institute, Livestock and Human Diseases Vector Control Division, P.o Box 3420, Arusha, Tanzania
| | - Siobhan M Mor
- School of Veterinary Science, Faculty of Science, The University of Sydney, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Australia
| | - Paul Gwakisa
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jenny-Ann Toribio
- School of Veterinary Science, Faculty of Science, The University of Sydney, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Australia.
| |
Collapse
|
11
|
Kimaro EG, Toribio JALML, Mor SM. Climate change and cattle vector-borne diseases: Use of participatory epidemiology to investigate experiences in pastoral communities in Northern Tanzania. Prev Vet Med 2017; 147:79-89. [PMID: 29254730 DOI: 10.1016/j.prevetmed.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/12/2017] [Accepted: 08/14/2017] [Indexed: 11/25/2022]
Abstract
Climate change is predicted to increase incidence of vector-borne diseases in humans, however, little is known about the impact of such diseases in livestock. In the absence of historical data with which to examine the inter-relation between climate and disease, participatory epidemiological (PE) methods were used with Maasai pastoralists of Monduli District, northern Tanzania to establish local observations on two major vector-borne diseases of cattle, namely East Coast fever (ECF) and African animal trypanosomiasis (AAT). Data collection involving gender segregated groups (10 men groups and 9 women groups) occurred in 10 randomly selected villages between November 2014 and March 2015. ECF and AAT were ranked amongst the top 5 most important cattle diseases with strong agreement across informant groups (Kendall's W=0.40 for men and 0.45 for women; p<0.01). Matrix scoring for both men and women groups confirmed that Masaai easily recognize these diseases. All groups associated ECF with the wet and cool dry seasons. AAT was more variable throughout the year, with more cases reported in the long dry season. Likewise, pastoralists reported differences in seasonal occurrence of disease vectors (Rhipicephalus appendiculatus and Glossina spp.) by village. Comparing 2014-1984, participant groups consistently reported declines in rainfall, vegetation cover and quality pasture, as well as increases in severe droughts. Experiences with ECF/AAT and vector abundance between these time periods was more variable across villages, and likely relates to changes in climate and animal management practices over the last 30 years. This baseline study is the first to document the inter-relation between climate and cattle vector-borne disease from the pastoralist perspective. Findings from this study reveal a complex interplay between human, animal and environmental factors, understanding of which is urgently required to devise approaches to mitigate effects of climate change in these vulnerable areas.
Collapse
Affiliation(s)
- Esther G Kimaro
- Sydney School of Veterinary Science, The University of Sydney, Australia; Tropical Pesticides Research Institute, Livestock and Human Diseases Vector Control, Division, P.O. Box 3420, Arusha, Tanzania
| | | | - Siobhan M Mor
- Sydney School of Veterinary Science, The University of Sydney, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Australia.
| |
Collapse
|
12
|
Prevalence and risk factors associated with Theileria parva infection in cattle in three regions of Tanzania. Trop Anim Health Prod 2017; 49:1613-1621. [PMID: 28752214 DOI: 10.1007/s11250-017-1367-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Ticks and tickborne diseases (TBDs) are serious constraints to cattle production in Tanzania and other tropical and subtropical countries. Among the TBDs, East Coast fever (ECF) is the most important as it causes significant economic losses to the cattle industry in Tanzania. However, control of ECF in Tanzania has continued to be a challenge due to inadequate epidemiological information. The main objective of this study was to determine the epidemiological situation of Theileria parva infections in cattle kept under pastoral and agro-pastoral farming systems in Mara, Singida, and Mbeya regions of Tanzania. Blood samples were collected from 648 cattle in the three regions. Genomic DNA was extracted and amplified in a polymerase chain reaction (PCR) using T. parva-specific primers targeting the 104-kD antigen (P104) gene. In addition, information was collected on the possible risk factors of T. parva infection (animal age, region, animal sex, tick burden, tick control method, and frequency of acaricide application). The prevalence of T. parva across the three regions was 14.2%. There was variation in prevalence among the three regions with Mara (21.8%) having a significantly higher (p = 0.001) prevalence than the other regions. Moreover, Mbeya exhibited relatively lower prevalence (7.4%) compared to the other regions. Factors found to be significantly associated with an animal being PCR positive for T. parva were region (p = 0.001) and tick burden (p = 0.003). Other factors were not found to be significant predictors of being PCR positive for T. parva. The present study showed high variation in tick burden and T. parva prevalence across the regions. Therefore, different strategic planning and cost-effective control measures for ticks and T. parva infection should be implemented region by region in order to reduce losses caused by ticks and ECF in the study area.
Collapse
|
13
|
A review on prevalence, control measure, and tolerance of Tanzania Shorthorn Zebu cattle to East Coast fever in Tanzania. Trop Anim Health Prod 2017; 49:813-822. [DOI: 10.1007/s11250-017-1266-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022]
|
14
|
E LKL, S WC, E DK, G M, M JK, A JM, R HM, L JMK, P SG. Tick burden and acquisition of immunity to Theileria parva by Tarime cattle in comparison to Sukuma cattle under different tick control regimes in the Lake Zone of Tanzania. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jvmah2015.0442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|