1
|
Rouxel C, Etienne A, Arné P, Le Barzic C, Girault G, Boulouis HJ, Haddad N, Lagrée AC, Deshuillers PL. Anaplasma phagocytophilum in urban and peri-urban passerine birds in Ile-de-France. Ticks Tick Borne Dis 2024; 15:102350. [PMID: 38723399 DOI: 10.1016/j.ttbdis.2024.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/09/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Wild animals in general, birds in particular, play a key role in transporting ticks and propagating tick-borne pathogens. Several studies have confirmed the infection of birds with Anaplasma phagocytophilum, with overall prevalence varying widely from country to country and/or study to study. This zoonotic bacterium, transmitted mainly by ticks of the genus Ixodes, is responsible for granulocytic anaplasmosis in humans (HGA) and domestic animals (cats, dogs, horses). The disease is also called tick-borne fever (TBF) in ruminants. Extremely rare in the USA, TBF is very common in Europe, where it causes economic losses in livestock. Conversely, HGA is well established in the USA whereas only a few less severe cases have been observed in Europe. Current typing techniques support the existence of multiple variants with differences in virulence/pathogenicity and tropism for certain tick and host species. However, epidemiological cycles remain difficult to characterize in Europe. Several studies describe a cycle apparently involving only birds in Europe, but no such study has been conducted in mainland France. Our objectives were to search for A. phagocytophilum in passerine birds in the Ile-de-France region and to explore their diversity using groEL and ankA gene typing and multilocus sequence typing (MLST). Various tissues (spleen, liver, and skin) were collected from cadavers of 680 passerines between March and December 2021. The presence of A. phagocytophilum was detected by qPCR Taqman targeting the msp2 gene. Three blackbirds (Turdus merula) were found positive, representing detection rates of 0.4 % in all birds tested and 3.3 % in blackbirds. The higher frequency of detection in blackbirds could be at least partially explained by their lifestyle, as they feed on the ground. Analysis of the results of groEL and ankA typing and MLST from positive blackbirds support the hypothesis that the avian A. phagocytophilum strains in Ile-de-France are distinct from those found in mammals, and that they form their own cluster in Europe.
Collapse
Affiliation(s)
- Clotilde Rouxel
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Adrien Etienne
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Pascal Arné
- EnvA, Centre hospitalier universitaire vétérinaire - Faune sauvage (Chuv-FS), 94700, Maisons-Alfort, France; EnvA, UPEC, ANSES, Dynamyc research group EA 7380, 94700, Maisons-Alfort, France
| | - Cécile Le Barzic
- EnvA, Centre hospitalier universitaire vétérinaire - Faune sauvage (Chuv-FS), 94700, Maisons-Alfort, France
| | - Guillaume Girault
- ANSES, INRAE, EnvA, Université Paris-Est, UMR Virologie, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Henri-Jean Boulouis
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Nadia Haddad
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, École nationale vétérinaire d'Alfort (EnvA), UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France.
| |
Collapse
|
2
|
Qi Y, Ai L, Zhu C, Lu Y, Lv R, Mao Y, Lu N, Tan W. Co-existence of Multiple Anaplasma Species and Variants in Ticks Feeding on Hedgehogs or Cattle Poses Potential Threats of Anaplasmosis to Humans and Livestock in Eastern China. Front Microbiol 2022; 13:913650. [PMID: 35756069 PMCID: PMC9226643 DOI: 10.3389/fmicb.2022.913650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background Anaplasma spp., causative agents of anaplasmosis, pose significant a threat to public health and economic losses in livestock farming. Co-infections/co-existence of various Anaplasma spp. may facilitate pathogen interactions and the emergence of novel variants, represent potential dangers to public health and economic losses from livestock farming, and raise challenges of detection and diagnosis. The information regarding co-infection/co-existence of Anaplasma in their vector ticks and wild animals is limited and needs urgent investigation. Methods Wild hedgehogs and ticks from hedgehogs and cattle were collected from Jiangsu province, Eastern China, and DNA was extracted from hedgehog organs and tick homogenates. Various genera of species-specific polymerase chain reaction (PCR) or nested PCR amplifications targeting 16S ribosomal RNA (rrs), msp4, or groEL gene coupled with sequencing were conducted to identify Anaplasma spp. Results Anaplasma phagocytophilum (1, 0.6%), A. marginale (2, 1.2%), A. platys variants xyn10pt-1 (13, 7.7%), xyn21pt-2 (3, 1.8%), and xyn3pt-3 (3, 1.8%), A. bovis variant cwp72bo-1 (12, 7.1%), and a novel Candidatus Cryptoplasma sp. (1, 0.6%) were identified in 168 Haemaphysalis longicornis ticks from cattle. A. platys variant xyn10pt-1 (20, 11.4%) and A. bovis variants cwp72bo-1 (12, 6.9%) and cwp55-36bo-2 (1, 0.6%) were detected in 173 H. flava ticks from hedgehogs. However, only A. bovis variant cwp72bo-1 (15, 46.7%) was identified in 32 Erinaceus amurensis hedgehogs. Various co-existence combinations were found only in ticks. Conclusion The co-existence of various Anaplasma spp. and variants in H. flava and H. longicornis was detected for the first time in the world. The high infection rate of A. bovis in hedgehogs and its moderate infection rate in their parasitic ticks suggest that Er. amurensis hedgehog could be an important reservoir of A. bovis, rather than A. platys. Horizontal transmission of Anaplasma spp. may exist among different tick species via their shared hosts in the investigated area. This study provided epidemiological data that could be crucial for strategy development for early warning, prevention, and control of potential Anaplasma infections.
Collapse
Affiliation(s)
- Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Lele Ai
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Changqiang Zhu
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China.,Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yongfeng Lu
- Administration for Drug and Instrument Supervision and Inspection of PLAJLSF, Beijing, China
| | - Ruichen Lv
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Yingqing Mao
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Nianhong Lu
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Weilong Tan
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| |
Collapse
|
3
|
Bauer BU, Răileanu C, Tauchmann O, Fischer S, Ambros C, Silaghi C, Ganter M. Anaplasma phagocytophilum and Anaplasma ovis-Emerging Pathogens in the German Sheep Population. Pathogens 2021; 10:1298. [PMID: 34684247 PMCID: PMC8537415 DOI: 10.3390/pathogens10101298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge on the occurrence of pathogenic tick-borne bacteria Anaplasma phagocytophilum and Anaplasma ovis is scarce in sheep from Germany. In 2020, owners from five flocks reported ill thrift lambs and ewes with tick infestation. Out of 67 affected sheep, 55 animals were clinically examined and hematological values, blood chemistry and fecal examinations were performed to investigate the underlying disease causes. Serological tests (cELISA, IFAT) and qPCR were applied to all affected sheep to rule out A. phagocytophilum and A. ovis as a differential diagnosis. Ticks were collected from selected pastures and tested by qPCR. Most animals (n = 43) suffered from selenium deficiency and endoparasites were detected in each flock. Anaplasma spp. antibodies were determined in 59% of examined sheep. Seventeen animals tested positive for A. phagocytophilum by qPCR from all flocks and A. phagocytophilum was also detected in eight pools of Ixodes ricinus. Anaplasma phagocytophilum isolates from sheep and ticks were genotyped using three genes (16S rRNA, msp4 and groEL). Anaplasma ovis DNA was identified in six animals from one flock. Clinical, hematological and biochemical changes were not significantly associated with Anaplasma spp. infection. The 16S rRNA analysis revealed known variants of A. phagocytophilum, whereas the msp4 and groEL showed new genotypes. Further investigations are necessary to evaluate the dissemination and health impact of both pathogens in the German sheep population particularly in case of comorbidities.
Collapse
Affiliation(s)
- Benjamin Ulrich Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Cristian Răileanu
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
| | - Oliver Tauchmann
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
| | - Susanne Fischer
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
| | - Christina Ambros
- Sheep Health Service, Bavarian Animal Health Service, Senator-Gerauer-Straße 23, 85586 Poing-Grub, Germany;
| | - Cornelia Silaghi
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Domstraße 11, 17489 Greifswald, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| |
Collapse
|
4
|
Rubel W, Schoneberg C, Wolf A, Ganter M, Bauer BU. Seroprevalence and Risk Factors of Anaplasma spp. in German Small Ruminant Flocks. Animals (Basel) 2021; 11:2793. [PMID: 34679815 PMCID: PMC8532635 DOI: 10.3390/ani11102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Knowledge about the distribution of Anaplasma spp. in small ruminants from Germany is limited. Therefore, serum samples were examined from 71 small ruminant flocks (2731 sheep, 447 goats) located in the five German federal states: Schleswig-Holstein (SH), Lower Saxony (LS), North Rhine-Westphalia (NRW), Baden-Wuerttemberg (BW) and Bavaria (BAV). Antibodies to Anaplasma spp. were determined by a cELISA based on the MSP5 antigen. A risk factor analysis at animal and flock level was also performed. Antibodies to Anaplasma spp. were detected in 70/71 flocks without significant difference in the intra-flock prevalence (IFP) between the federal states. The mean antibody levels from sheep were significantly lower in northern Germany (LS, SH) compared to west (NRW) and south Germany (BW, BAV). Sheep had a 2.5-fold higher risk of being seropositive than goats. Females and older animals (>2 years) were more likely to have antibodies to Anaplasma spp. in one third and one quarter of cases, respectively. Flocks used for landscape conservation had a five times higher risk of acquiring an IFP greater than 20%. Cats and dogs on the farms increased the probability for small ruminant flocks to have an IFP of above 20% 10-fold and 166-fold, respectively. Further studies are necessary to assess the impact of Anaplasma species on the health of small ruminants in Germany.
Collapse
Affiliation(s)
- Wiebke Rubel
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (A.W.); (M.G.); (B.U.B.)
| | - Clara Schoneberg
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Annika Wolf
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (A.W.); (M.G.); (B.U.B.)
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (A.W.); (M.G.); (B.U.B.)
| | - Benjamin Ulrich Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (A.W.); (M.G.); (B.U.B.)
| |
Collapse
|
5
|
Rar V, Tkachev S, Tikunova N. Genetic diversity of Anaplasma bacteria: Twenty years later. INFECTION GENETICS AND EVOLUTION 2021; 91:104833. [PMID: 33794351 DOI: 10.1016/j.meegid.2021.104833] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/04/2023]
Abstract
The genus Anaplasma (family Anaplasmataceae, order Rickettsiales) includes obligate intracellular alphaproteobacteria that multiply within membrane-bound vacuoles and are transmitted by Ixodidae ticks to vertebrate hosts. Since the last reclassification of Anaplasmataceae twenty years ago, two new Anaplasma species have been identified. To date, the genus includes eight Anaplasma species (A. phagocytophilum, A. marginale, A. centrale, A. ovis, A. bovis, A. platys, A. odocoilei, and A. capra) and a large number of unclassified genovariants that cannot be assigned to known species. Members of the genus can cause infection in humans and a wide range of domestic animals with different degrees of severity. Long-term persistence which, in some cases, is manifested as cyclic bacteremia has been demonstrated for several Anaplasma species. Zoonotic potential has been shown for A. phagocytophilum, the agent of human granulocytic anaplasmosis, and for some other Anaplasma spp. that suggests a broader medical relevance of this genus. Genetic diversity of Anaplasma spp. has been intensively studied in recent years, and it has been shown that some Anaplasma spp. can be considered as a complex of genetically distinct lineages differing by geography, vectors, and host tropism. The aim of this review was to summarize the current knowledge concerning the natural history, pathogenic properties, and genetic diversity of Anaplasma spp. and some unclassified genovariants with particular attention to their genetic characteristics. The high genetic variability of Anaplasma spp. prompted us to conduct a detailed phylogenetic analysis for different Anaplasma species and unclassified genovariants, which were included in this review. The genotyping of unclassified genovariants has led to the identification of at least four distinct clades that might be considered in future as new candidate species.
Collapse
Affiliation(s)
- Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| | - Sergey Tkachev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
6
|
Langenwalder DB, Schmidt S, Silaghi C, Skuballa J, Pantchev N, Matei IA, Mihalca AD, Gilli U, Zajkowska J, Ganter M, Hoffman T, Salaneck E, Petrovec M, von Loewenich FD. The absence of the drhm gene is not a marker for human-pathogenicity in European Anaplasma phagocytophilum strains. Parasit Vectors 2020; 13:238. [PMID: 32381072 PMCID: PMC7206706 DOI: 10.1186/s13071-020-04116-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that replicates in neutrophil granulocytes. It is transmitted by ticks of the Ixodes ricinus complex and causes febrile illness in humans and animals. The geographical distribution of A. phagocytophilum spans the Americas, Europe, Africa and Asia. However, human disease predominantly occurs in North America but is infrequently reported from Europe and Asia. In North American strains, the absence of the drhm gene has been proposed as marker for pathogenicity in humans whereas no information on the presence or absence of the drhm gene was available for A. phagocytophilum strains circulating in Europe. Therefore, we tested 511 European and 21 North American strains for the presence of drhm and compared the results to two other typing methods: multilocus sequence typing (MLST) and ankA-based typing. RESULTS Altogether, 99% (478/484) of the analyzable European and 19% (4/21) of the North American samples from different hosts were drhm-positive. Regarding the strains from human granulocytic anaplasmosis cases, 100% (35/35) of European origin were drhm-positive and 100% (14/14) of North American origin were drhm-negative. Human strains from North America and Europe were both part of MLST cluster 1. North American strains from humans belonged to ankA gene clusters 11 and 12 whereas European strains from humans were found in ankA gene cluster 1. However, the North American ankA gene clusters 11 and 12 were highly identical at the nucleotide level to the European cluster 1 with 97.4% and 95.2% of identity, respectively. CONCLUSIONS The absence of the drhm gene in A. phagocytophilum does not seem to be associated with pathogenicity for humans per se, because all 35 European strains of human origin were drhm-positive. The epidemiological differences between North America and Europe concerning the incidence of human A. phagocytophilum infection are not explained by strain divergence based on MLST and ankA gene-based typing.
Collapse
Affiliation(s)
- Denis B Langenwalder
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacherstrasse 67, 55131, Mainz, Germany
| | - Sabine Schmidt
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacherstrasse 67, 55131, Mainz, Germany
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Jasmin Skuballa
- Chemical and Veterinary Investigations Office Karlsruhe (CVUA Karlsruhe), Weissenburgerstrasse 3, 76187, Karlsruhe, Germany
| | - Nikola Pantchev
- IDEXX Laboratories, Mörikestrasse 28/3, 71636, Ludwigsburg, Germany
| | - Ioana A Matei
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Manastur 3-5, 400372, Cluj-Napoca, Romania
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Manastur 3-5, 400372, Cluj-Napoca, Romania
| | - Urs Gilli
- IDEXX Diavet AG, Schlyffistrasse 10, 8806, Bäch, Switzerland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, ul.Żurawia 14, 15-345, Białystok, Poland
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Tove Hoffman
- Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Erik Salaneck
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Friederike D von Loewenich
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacherstrasse 67, 55131, Mainz, Germany.
| |
Collapse
|
7
|
Hauck D, Jordan D, Springer A, Schunack B, Pachnicke S, Fingerle V, Strube C. Transovarial transmission of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus under field conditions extrapolated from DNA detection in questing larvae. Parasit Vectors 2020; 13:176. [PMID: 32264920 PMCID: PMC7140504 DOI: 10.1186/s13071-020-04049-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background Ixodes ricinus constitutes the main European vector tick for the Lyme borreliosis pathogen Borrelia burgdorferi (sensu lato), the relapsing fever borrelia Borrelia miyamotoi, as well as Anaplasma phagocytophilum and several Rickettsia species. Under laboratory conditions, a transovarial transmission to the next tick generation is described for Rickettsia spp. and Borrelia spp., especially regarding B. miyamotoi, whereas the efficiency of transovarial transfer under field conditions is largely unstudied. Methods In order to better estimate the potential infection risk by tick larvae for humans and animals, 1500 I. ricinus larvae from 50 collected “nests” (larvae adhering to the flag in a clumped manner) were individually examined for Borrelia, Rickettsia and A. phagocytophilum DNA using quantitative real-time PCR (qPCR). Results Thirty-nine of 50 nests each (78.0%, 95% CI: 64.0–88.5%) were positive for Borrelia spp. and Rickettsia spp. DNA, and in three nests (6.0%, 95% CI: 1.3–16.5%) A. phagocytophilum DNA was detected. Overall, DNA from at least one pathogen could be detected in 90.0% (45/50, 95% CI: 78.2–96.7%) of the nests. Of the 1500 larvae, 137 were positive for Borrelia spp. DNA (9.1%, 95% CI: 7.7–10.7%), 341 for Rickettsia spp. DNA (22.7%, 95% CI: 20.6–24.9%) and three for A. phagocytophilum DNA (0.2%, 95% CI: 0–0.6%). Quantity of Borrelia spp. and Anaplasma spp. DNA in positive larvae was low, with 2.7 × 100Borrelia 5S-23S gene copies and 2.4 × 101A. phagocytophilum msp2/p44 gene copies detected on average, while Rickettsia-positive samples contained on average 5.4 × 102gltA gene copies. Coinfections were found in 66.0% (33/50, 95% CI: 51.2–78.8%) of the nests and 8.6% (38/443, 95% CI: 6.1–11.6%) of positive larvae. In fact, larvae had a significantly higher probability of being infected with Borrelia spp. or Rickettsia spp. when both pathogens were present in the nest. Conclusions This study provides evidence for transovarial transmission of Rickettsia spp. and Borrelia spp. in I. ricinus under field conditions, possibly facilitating pathogen persistence in the ecosystem and reducing the dependence on the presence of suitable reservoir hosts. Further studies are needed to prove transovarial transmission and to explain the surprisingly high proportion of nests containing Rickettsia and/or Borrelia DNA-positive larvae compared to infection rates in adult ticks commonly reported in other studies.![]()
Collapse
Affiliation(s)
- Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Daniela Jordan
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | | | | | - Volker Fingerle
- National Reference Centre for Borrelia, Veterinaerstraße 2, 85764, Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
8
|
Langenwalder DB, Silaghi C, Nieder M, Pfeffer M, von Loewenich FD. Co-infection, reinfection and superinfection with Anaplasma phagocytophilum strains in a cattle herd based on ankA gene and multilocus sequence typing. Parasit Vectors 2020; 13:157. [PMID: 32228658 PMCID: PMC7106686 DOI: 10.1186/s13071-020-04032-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that replicates in neutrophil granulocytes. It is transmitted by ticks of the Ixodes ricinus complex and causes febrile illness in humans and animals. We used multilocus sequence typing (MLST) and ankA gene-based typing to study the molecular epidemiology of the A. phagocytophilum strains circulating in a German cattle herd over one pasture season. The aim was to investigate whether co-infection with two distinct variants, reinfection with the same and/or superinfection by a different strain occurred during one pasture season. Eight genetic loci were sequenced in 47 PCR-positive samples from 15 animals. RESULTS Five different sequence types (ST) and four ankA alleles were detected in the cattle herd. Three different ST caused clinically overt tick-borne fever in primary infected animals. The concordance between ST and ankA allele was 100%. Therefore, the housekeeping genes used for MLST and the highly variable ankA gene were concatenated to increase resolution. Co-infection could be proven because samples of chronologically close collection dates were included. Co-infecting A. phagocytophilum strains differed by 14 to 18 single nucleotide polymorphisms (SNPs). Most superinfecting variants varied by 14 SNPs from the previous strain and appeared in median after a free interval of 31 days. Thus, it is unlikely that superinfecting strains arose by in-animal evolution. Immunity against re- or superinfection was assumed because the cattle developed clinical signs only during primary infection. CONCLUSIONS The tick-pathogen-vertebrate host interaction is probably much more complex than previously thought taking into account the frequently occurring events of co-infection, reinfection and superinfection. This complex situation could not be easily simulated in an experimental infection and underlines the value of field studies.
Collapse
Affiliation(s)
- Denis B. Langenwalder
- Department of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacherstrasse 67, 55131 Mainz, Germany
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Marion Nieder
- Institute for Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Martin Pfeffer
- Institute for Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Friederike D. von Loewenich
- Department of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacherstrasse 67, 55131 Mainz, Germany
| |
Collapse
|
9
|
Mukhacheva TA, Shaikhova DR, Kovalev SY, von Loewenich FD. Phylogeographical diversity of Anaplasma phagocytophilum in the Asian part of Russia based on multilocus sequence typing and analysis of the ankA gene. INFECTION GENETICS AND EVOLUTION 2020; 80:104234. [PMID: 32028054 DOI: 10.1016/j.meegid.2020.104234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
Abstract
Anaplasma phagocytophilum is a tick-transmitted bacterium that replicates in neutrophil granulocytes and elicits febrile disease in humans and animals; it is widely distributed in the Americas, Europe, Africa, and Asia. A. phagocytophilum is commonly regarded as a single species, but several genetic variants with distinct host distribution and geographical origin have been described. In a previous study, we used multilocus sequence typing (MLST) to characterize 25 A. phagocytophilum strains from Ixodes spp. ticks collected in the Asian part of Russia. The obtained concatenated sequences formed two separate clades reflecting their Asiatic origin and/or the vector species. As one of the clades was related to A. phagocytophilum strains from European voles and shrews, we here extended our analysis to seven samples from the northern red-backed vole Myodes rutilus and included 38 additional strains of Asiatic origin from Ixodes persulcatus, I. pavlovskyi, and their hybrids. Further, the ankA gene was sequenced in 59 A. phagocytophilum strains from ticks and voles. The Russian strains belonged to the two new MLST clusters 5 (38/70) and 6 (32/70), previously referred to as clades within clusters 1 and 3, respectively. The total number of sequence types (STs) found was 27 including 12 new STs. The ankA sequences were unique and formed two new clusters: cluster 8 (34/59) and cluster 10 (25/59). The concordance between MLST and ankA-based typing was 100%. This means that at least two distinct genetic groups of A. phagocytophilum circulate in the Asian Part of Russia whose reservoir hosts and transmission cycles have to be further elucidated.
Collapse
Affiliation(s)
- Tatyana A Mukhacheva
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg 620000, Russia.
| | - Daria R Shaikhova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Popova street 30, Yekaterinburg 620014, Russia
| | - Sergey Y Kovalev
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg 620000, Russia
| | - Friederike D von Loewenich
- Department of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacherstrasse 67, D-55131 Mainz, Germany
| |
Collapse
|
10
|
Hamšíková Z, Silaghi C, Takumi K, Rudolf I, Gunár K, Sprong H, Kazimírová M. Presence of Roe Deer Affects the Occurrence of Anaplasma phagocytophilum Ecotypes in Questing Ixodes ricinus in Different Habitat Types of Central Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234725. [PMID: 31783486 PMCID: PMC6926711 DOI: 10.3390/ijerph16234725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
The way in which European genetic variants of Anaplasma phagocytophilum circulate in their natural foci and which variants cause disease in humans or livestock remains thus far unclear. Red deer and roe deer are suggested to be reservoirs for some European A. phagocytophilum strains, and Ixodes ricinus is their principal vector. Based on groEL gene sequences, five A. phagocytophilum ecotypes have been identified. Ecotype I is associated with the broadest host range, including strains that cause disease in domestic animals and humans. Ecotype II is associated with roe deer and does not include zoonotic strains. In the present study, questing I. ricinus were collected in urban, pasture, and natural habitats in the Czech Republic, Germany, and Slovakia. A fragment of the msp2 gene of A. phagocytophilum was amplified by real-time PCR in DNA isolated from ticks. Positive samples were further analyzed by nested PCRs targeting fragments of the 16S rRNA and groEL genes, followed by sequencing. Samples were stratified according to the presence/absence of roe deer at the sampling sites. Geographic origin, habitat, and tick stage were also considered. The probability that A. phagocytophilum is a particular ecotype was estimated by a generalized linear model. Anaplasma phagocytophilum was identified by genetic typing in 274 I. ricinus ticks. The majority belonged to ecotype I (63.9%), 28.5% were ecotype II, and both ecotypes were identified in 7.7% of ticks. Ecotype II was more frequently identified in ticks originating from a site with presence of roe deer, whereas ecotype I was more frequent in adult ticks than in nymphs. Models taking into account the country-specific, site-specific, and habitat-specific aspects did not improve the goodness of the fit. Thus, roe deer presence in a certain site and the tick developmental stage are suggested to be the two factors consistently influencing the occurrence of a particular A. phagocytophilum ecotype in a positive I. ricinus tick.
Collapse
Affiliation(s)
- Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia;
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institute, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Katsuhisa Takumi
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (K.T.); (H.S.)
| | - Ivo Rudolf
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Klášterní 2, 69142 Valtice, Czech Republic;
| | - Kristyna Gunár
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences, Heyrovského nám. 1888/2, 16200 Prague 6, Czech Republic;
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; (K.T.); (H.S.)
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia;
- Correspondence:
| |
Collapse
|