1
|
Reddyrajula R, Perveen S, Negi A, Etikyala U, Manga V, Sharma R, Dalimba UK. N-Acyl phenothiazines as mycobacterial ATP synthase inhibitors: Rational design, synthesis and in vitro evaluation against drug sensitive, RR and MDR-TB. Bioorg Chem 2024; 151:107702. [PMID: 39142196 DOI: 10.1016/j.bioorg.2024.107702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The mycobacterial F-ATP synthase is responsible for the optimal growth, metabolism and viability of Mycobacteria, establishing it as a validated target for the development of anti-TB therapeutics. Herein, we report the discovery of an N-acyl phenothiazine derivative, termed PT6, targeting the mycobacterial F-ATP synthase. PT6 is bactericidal and active against the drug sensitive, Rifampicin-resistant as well as Multidrug-resistant tuberculosis strains. Compound PT6 showed noteworthy inhibition of F-ATP synthesis, exhibiting an IC50 of 0.788 µM in M. smegmatis IMVs and was observed that it could deplete intracellular ATP levels, exhibiting an IC50 of 30 µM. PT6 displayed a high selectivity towards mycobacterial ATP synthase compared to mitochondrial ATP synthase. Compound PT6 showed a minor synergistic effect in combination with Rifampicin and Isoniazid. PT6 demonstrated null cytotoxicity as confirmed by assessing its toxicity against VERO cell lines. Further, the binding mechanism and the activity profile of PT6 were validated by employing in silico techniques such as molecular docking, Prime MM/GBSA, DFT and ADMET analysis. These results suggest that PT6 presents an attractive lead for the discovery of a novel class of mycobacterial F-ATP synthase inhibitors.
Collapse
Affiliation(s)
- Rajkumar Reddyrajula
- Central Research Facility, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India; Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anjali Negi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Umadevi Etikyala
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500 076, India
| | - Vijjulatha Manga
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500 076, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Udaya Kumar Dalimba
- Organic and Materials Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India.
| |
Collapse
|
2
|
Edwards BD, Field SK. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs 2022; 82:1695-1715. [PMID: 36479687 PMCID: PMC9734533 DOI: 10.1007/s40265-022-01817-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
This article provides an encompassing review of the current pipeline of putative and developed treatments for tuberculosis, including multidrug-resistant strains. The review has organized each compound according to its site of activity. To provide context, mention of drugs within current recommended treatment regimens is made, thereafter followed by discussion on recently developed and upcoming molecules at established and novel targets. The review is designed to provide a clinically applicable understanding of the compounds that are deemed most currently relevant, including those already under clinical study and those that have shown promising pre-clinical results. An extensive review of the efficacy and safety data for key contemporary drugs already incorporated into treatment regimens, such as bedaquiline, pretomanid, and linezolid, is provided. The three levels of the bacterial cell wall (mycolic acid, arabinogalactan, and peptidoglycan layers) are highlighted and important compounds designed to target each layer are delineated. Amongst others, the highly optimistic and potent anti-mycobacterial activity of agents such as BTZ-043, PBTZ 169, and OPC-167832 are emphasized. The evolving spectrum of oxazolidinones, such as sutezolid, delpazolid, and TBI-223, all aiming to exceed the efficacy achieved with linezolid yet offer a safer alternative to the potential toxicity, are reviewed. New and exciting prospective agents with novel mechanisms of impact against TB, including 3-aminomethyl benzoxaboroles and telacebec, are underscored. We describe new diaryloquinolines in development, striving to build on the immense success of bedaquiline. Finally, we discuss some of these compounds that have shown encouraging additive or synergistic benefit when used in combination, providing some promise for the future in treating this ancient scourge.
Collapse
Affiliation(s)
- Brett D Edwards
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada.
| | - Stephen K Field
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada
| |
Collapse
|
3
|
Foletto VS, da Rosa TF, Serafin MB, Bottega A, Hörner R. Repositioning of non-antibiotic drugs as an alternative to microbial resistance: a systematic review. Int J Antimicrob Agents 2021; 58:106380. [PMID: 34166776 DOI: 10.1016/j.ijantimicag.2021.106380] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/10/2021] [Accepted: 06/10/2021] [Indexed: 01/19/2023]
Abstract
The global spread of microbial resistance coupled with high costs and slow pace in the discovery of a new antibiotic have made drug repositioning an attractive and promising alternative in the treatment of infections caused by multidrug resistant (MDR) microorganisms. The reuse involves the production of compounds with lower costs and development time, using diversified production technologies. The present systematic review aimed to present a selection of studies published in the last 20 years, which report the antimicrobial activity of non-antibiotic drugs that are candidates for repositioning, which could be used against the current microbial multidrug resistance. A search was performed in the PubMed, SciELO and Google Scholar databases using the following search strategies: [(drug repurposing) OR (drug repositioning) OR (repositioning) AND (non-antibiotic) AND (antibacterial activity) AND (antimicrobial activity)]. Overall, 112 articles were included, which explored the antimicrobial activity in antidepressants, antihypertensives, anti-inflammatories, antineoplastics, hypoglycemic agents, among other drugs. It was concluded that they have significant antimicrobial activity in vitro and in vivo, against standard strain and clinical isolates (Gram-negative and Gram-positive) and fungi. When associated with antibacterials, most of these drugs had their antibacterial activity enhanced. It was also a consensus of the studies included in this review that the presence of aromatic rings in the molecular structure contributes to antimicrobial activity. This review highlights the potential repositioning of several classes of non-antibiotic drugs as promising candidates for repositioning in the treatment of severe bacterial infections of MDR bacteria, extensively resistant (XDR) and pan-resistant (PDR) to drugs.
Collapse
Affiliation(s)
- Vitória S Foletto
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Taciéli F da Rosa
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Marissa B Serafin
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Angelita Bottega
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Rosmari Hörner
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil; Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Santa Maria, RS, Brasil.
| |
Collapse
|
4
|
Narang R, Kumar R, Kalra S, Nayak SK, Khatik GL, Kumar GN, Sudhakar K, Singh SK. Recent advancements in mechanistic studies and structure activity relationship of FoF1 ATP synthase inhibitor as antimicrobial agent. Eur J Med Chem 2019; 182:111644. [DOI: 10.1016/j.ejmech.2019.111644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
|
5
|
A Protein Complex from Human Milk Enhances the Activity of Antibiotics and Drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.01846-18. [PMID: 30420480 DOI: 10.1128/aac.01846-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.
Collapse
|
6
|
Singh SK, Nath G, Kumar A, Sellamuthu SK. Design, Synthesis and Biological Profiling of Novel Phenothiazine Derivatives as Potent Antitubercular Agents. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/2211352516666180730121013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
Neuroleptic phenothiazines have been reported for antitubercular activity, but
the unwanted side effect (antipsychotic activity) restricted their use as antitubercular drugs.
Objective:
The study aimed to carry out development of phenothiazine based antitubercular agents by
modifying/removing the chemical group(s)/ linker(s) of chlorpromazine essential for exerting an
antipsychotic effect.
Methods:
The designed molecules were filtered with a cut-off of docking score < 2.0 Kcal/mol against
dopamine receptors, so that their binding with the receptor would be reduced to produce no/ less antipsychotic
effect. The molecules were then synthesized and screened against M. tuberculosis H37Rv.
They were further screened against a gram-positive (S. aureus) and a gram-negative (E. coli) bacterial
strains to evaluate the spectrum of activity. The ability of the compounds to cross the blood-brain barrier
(BBB) was also analyzed. The compounds were further examined for cytotoxicity (CC50) against
mammalian VERO cells.
Results:
Compounds 14p, 15p and 16p were found to be the most effective against all the strains viz. M.
tuberculosis H37Rv, S. aureus and E. coli with MIC of 1.56µg/ml, 0.98µg/ml and 3.91µg/ml, respectively.
Further, BBB permeability was found to be diminished in comparison to chlorpromazine, which
would ultimately reduce the unwanted antipsychotic activity. They were also found to be free from toxicity
against VERO cells.
Conclusion:
The designed strategy, to enhance the antitubercular activity with concomitant reduction of
dopamine receptor binding and BBB permeability was proved to be fruitful.
Collapse
Affiliation(s)
- Sushil K. Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Satheesh K. Sellamuthu
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
7
|
Lentz F, Reiling N, Martins A, Molnár J, Hilgeroth A. Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis. Molecules 2018; 23:molecules23040825. [PMID: 29617279 PMCID: PMC6017859 DOI: 10.3390/molecules23040825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 11/23/2022] Open
Abstract
The number of effective first-line antibiotics for the treatment of Mycobacterium tuberculosis infection is strongly limited to a few drugs. Due to emerging resistance against those drugs, second- and third-line antibiotics have been established in therapy with certain problems and also increasing mycobacterial resistance. An alternative to such novel drugs or combined therapeutic regimes which may reduce resistance development is finding enhancers of mycobacterial drug effectiveness, especially enhancers that counteract causative resistance mechanisms. Such enhancers may reduce the extracellular drug efflux mediated by bacterial efflux pumps and thus enhance the intracellular drug toxicity. We developed novel 1,4-dihydropyridines (DHPs) as potential efflux pump inhibitors with some determined P-gp affinities. The influence on the antituberculotic drug toxicity has been investigated for three prominent antituberculotic drugs. Exclusive and selective toxicity enhancing effects have been detected for isoniazid (INH) which could be related to certain substituent effects of the 1,4-DHPs. So, structure-dependent activities have been found. Thus, promising enhancers could be identified and a suggested efflux pump inhibition is discussed.
Collapse
Affiliation(s)
- Fabian Lentz
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
| | - Norbert Reiling
- Research Center of Borstel, Leibniz Lung Center, 23845 Borstel, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, 23845 Borstel, Germany.
| | - Ana Martins
- Department of Medical Microbiology, University of Szeged, 6720 Szeged, Hungary.
| | - Joseph Molnár
- Department of Medical Microbiology, University of Szeged, 6720 Szeged, Hungary.
| | - Andreas Hilgeroth
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
8
|
Sellamuthu S, Singh M, Kumar A, Singh SK. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery. Expert Opin Ther Targets 2017; 21:559-570. [PMID: 28472892 DOI: 10.1080/14728222.2017.1327577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is highly dangerous due to the development of resistance to first-line drugs. Moreover, Mycobacterium tuberculosis (Mtb) has also developed resistance to newly approved antitubercular drug bedaquiline. This necessitates the search for drugs acting on newer molecular targets. The energy metabolism of mycobacteria is the prime focus for the discovery of novel antitubercular drugs. Targeting type-2 NADH dehydrogenase (NDH-2) involved in the production of respiratory ATP could, therefore, be effective in treating the disease. Areas covered: This review describes the energetics of mycobacteria and the role of NDH-2 in ATP synthesis. Special attention has been given for genetic and chemical validations of NDH-2 as a molecular target. The reported kinetics and crystal structures of NDH-2 have been given in detail for better understanding of the enzyme. Expert opinion: NDH-2 is an essential enzyme for ATP synthesis and has a potential role in dormancy and persistence of Mtb. The human counterpart lacks this enzyme and hence NDH-2 inhibitors could have more clinical importance. Phenothiazines are potent inhibitor of NDH-2 and are effective against both drug-susceptible and drug-resistant Mtb. Thus, it is highly desirable to optimize phenothiazine class of compounds for the development of next generation anti-TB drugs.
Collapse
Affiliation(s)
- Satheeshkumar Sellamuthu
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Meenakshi Singh
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Ashok Kumar
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Sushil Kumar Singh
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| |
Collapse
|
9
|
Amaral L, Viveiros M. Thioridazine: A Non-Antibiotic Drug Highly Effective, in Combination with First Line Anti-Tuberculosis Drugs, against Any Form of Antibiotic Resistance of Mycobacterium tuberculosis Due to Its Multi-Mechanisms of Action. Antibiotics (Basel) 2017; 6:antibiotics6010003. [PMID: 28098814 PMCID: PMC5372983 DOI: 10.3390/antibiotics6010003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
This review presents the evidence that supports the use of thioridazine (TZ) for the therapy of a pulmonary tuberculosis infection regardless of its antibiotic resistance status. The evidence consists of in vitro and ex vivo assays that demonstrate the activity of TZ against all encountered Mycobacterium tuberculosis (Mtb) regardless of its antibiotic resistance phenotype, as well as in vivo as a therapy for mice infected with multi-drug resistant strains of Mtb, or for human subjects infected with extensively drug resistant (XDR) Mtb. The mechanisms of action by which TZ brings about successful therapeutic outcomes are presented in detail.
Collapse
Affiliation(s)
- Leonard Amaral
- Insititute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal.
- Institute of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Hungary.
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal.
| |
Collapse
|