1
|
Jin Z, Pang W, Zhao Y, Min H, Yao S, Bian Z, Wen Y, Peng C, Cao Y, Zheng L. Oral administration of IPI549 protects mice from neuropathology and an overwhelming inflammatory response during experimental cerebral malaria. Int J Parasitol Drugs Drug Resist 2024; 25:100539. [PMID: 38621317 PMCID: PMC11021959 DOI: 10.1016/j.ijpddr.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.
Collapse
Affiliation(s)
- Zhuoru Jin
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China; Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhifang Bian
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yixin Wen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Chuanyang Peng
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China; Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Sala V, Della Sala A, Ghigo A, Hirsch E. Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in respiratory diseases. Cell Stress 2021; 5:40-51. [PMID: 33821232 PMCID: PMC8012884 DOI: 10.15698/cst2021.04.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidyl inositol 3 kinase gamma (PI3Kγ) is expressed in all the cell types that are involved in airway inflammation and disease, including not only leukocytes, but also structural cells, where it is expressed at very low levels under physiological conditions, while is significantly upregulated after stress. In the airways, PI3Kγ behaves as a trigger or a controller, depending on the pathological context. In this review, the contribution of PI3Kγ in a plethora of respiratory diseases, spanning from acute lung injury, pulmonary fibrosis, asthma, cystic fibrosis and response to both bacterial and viral pathogens, will be commented.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| |
Collapse
|
3
|
Altered microbial community structure in PI3Kγ knockout mice with colitis impeding relief of inflammation: Establishment of new indices for intestinal microbial disorder. Int Immunopharmacol 2019; 79:105901. [PMID: 31896510 DOI: 10.1016/j.intimp.2019.105901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022]
Abstract
Lipopolysaccharide stimulates the intestinal microbiome to activate phosphoinositide 3 kinase (PI3K) signaling via several pathways; however, the direct effect that PI3K has on the intestinal bacterial community remains unclear. Herein, we investigate changes in the colonic microbiome of colitis PI3Kγ-knockout (PI3Kγ-/-) mice. Additionally, the effect of anal administration of colonic irrigation fluid from control mice to those with colitis was examined. Microbial 16S rRNA genes from the colonic mucosa of PI3Kγ-/- and WT mice were sequenced using Illumina MiSeq platform, and colonic IgA, IL-2, IL-10, and IL-17A production was quantified by western blot analysis. Myeloperoxidase (MPO) activity was detected by absorbance via colorimetric analysis. From the results, two new indices were derived by dividing the bacterial community into invading taxa, common taxa, and vanishing taxa. These indices were used to estimate the degree of microbiome disorder in chronic experimental colitis models. PI3Kγ-/- mice showed slower remission of inflammation as assessed by the disease activity index,pathological score, IL-2, IL-17, IL-10, IgA expression and MPO activity. The unique and common taxa of wild-type and PI3Kγ-/- mice increased as colitis symptoms regressed. Continuous loss of commensal bacteria happened with the continuous invasion of exogenous bacteria in the intestinal mucosa of PI3Kγ--/- mice after colitis begin to aggravate. However, transplantation of normal intestinal microbiota to PI3Kγ-/- mice promoted remission of inflammation; while the microbial dysbiosis observed during PI3Kγ dysfunction aggravated the intestinal microbiome disorder and impeded colitis recovery. Thus, the PI3Kγ signaling pathway may regulate microbial community composition in the colon.
Collapse
|
4
|
Leisching GR. PI3-Kinase δγ Catalytic Isoforms Regulate the Th-17 Response in Tuberculosis. Front Immunol 2019; 10:2583. [PMID: 31736982 PMCID: PMC6838131 DOI: 10.3389/fimmu.2019.02583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/18/2019] [Indexed: 01/29/2023] Open
Abstract
Although IL17A plays a protective role at the mucosal surface, when IL17A signaling becomes dysregulated, a pathological response is locally induced. At the early stages of Mycobacterium tuberculosis (M.tb) infection, IL17A contributes to granuloma formation and pathogen containment. In contrast, during disease progression, a dysregulated IL17A hyperinflammatory response drives tissue destruction through enhanced neutrophil recruitment. Cumulative research has implicated the PI3-Kinase pathways as one of the most relevant in the pathophysiology of inflammation. Evidence shows that IL-17A secretion and the expansion of the Th17 population is dependant in PI3-Kinase signaling, with the p110δ and p110γ isoforms playing a prominent role. The p110γ isoform promotes disease progression through dampening of the Th17 response, preventing pathogen clearance and containment. The p110γ gene, PIK3CG is downregulated in TB patients during late-stage disease when compared to healthy controls, demonstrating an important modulatory role for this isoform during TB. Conversely, the p110δ isoform induces IL-17A release from pulmonary γδ T-cells, committed Th17 cells and promotes neutrophil recruitment to the lung. Inhibiting this isoform not only suppresses IL-17A secretion from Th17 cells, but it also inhibits cytokine production from multiple T-helper cell types. Since increased IL-17A levels are observed to be localized in the lung compartments (BAL and lymphocytes) in comparison to circulating levels, an inhalable PI3Kδ inhibitor, which is currently utilized for inflammatory airway diseases characterized by IL-17A over-secretion, may be a therapeutic option for active TB disease.
Collapse
Affiliation(s)
- Gina R Leisching
- SA MRC Centre for TB Research, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
5
|
Scolopendra subspinipes mutilans L. Koch Ameliorates Rheumatic Heart Disease by Affecting Relative Percentages of CD4 +CD25 +FoxP3 Treg and CD4 +IL17 T Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4674190. [PMID: 31379962 PMCID: PMC6662451 DOI: 10.1155/2019/4674190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/28/2019] [Indexed: 01/09/2023]
Abstract
(Scolopendra subspinipes mutilans L. Koch. (SSLK) helps reduce the risk of coronary heart disease (CHD) but its effects on rheumatic heart disease (RHD) patients remain unclear. 80 RHD patients were recruited and randomly assigned into SG (to receive SSLK treatment) and CG (to receive placebo) groups, and the intervention lasted for 3 months. The following cardiac indexes were measured, including mean arterial pressure (MAP), heart rate (HR), central venous pressure (CVP), blood lactate, fatigue, shortness of breath, palpitation, and chest pain. ELISA kits were used to analyze creatine kinase isoenzyme (CK-MB), serum troponin T (cTnT), CRP, IL-1β, IL-6, and TNF-α, malondialdehyde (MDA), and superoxide dismutase (SOD). Relative percentages of CD4+CD25+FoxP3 regulatory (Treg) and CD4+IL-17 T cells were measured using flow cytometry. After 3-month therapy, SSLK intervention improved MAP, HR, CVP, fatigue, palpitation, and shortness breath of CHD patients, reduced the levels of blood lactate, CK-MB, cTnT, CRP, IL-1β, IL-6, TNF-α, MDA, and increased SOD level (p < 0.05). Meanwhile, SSLK treatment increased the percentages of CD4+CD25+FoxP3 Treg cells and reduced relative percentages of CD4+IL-17 T cells in a dose-dependent way (p < 0.05). Relative percentage of CD4+CD25+FoxP3 Treg cells had negative relationship while CD4+IL17 T cells had positive relationship with CK-MB, cTnT, CRP, and TNF-a (p < 0.01). SSLK ameliorated RHD by affecting the balance of CD4+CD25+FoxP3 Treg and CD4+IL17 T cells.
Collapse
|
6
|
Lyadova I, Nikitina I. Cell Differentiation Degree as a Factor Determining the Role for Different T-Helper Populations in Tuberculosis Protection. Front Immunol 2019; 10:972. [PMID: 31134070 PMCID: PMC6517507 DOI: 10.3389/fimmu.2019.00972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Efficient tuberculosis (TB) control depends on early TB prediction and prevention. Solution to these tasks requires knowledge of TB protection correlates (TB CoPs), i.e., laboratory markers that are mechanistically involved in the protection and which allow to determine how well an individual is protected against TB or how efficient the candidate TB vaccine is. The search for TB CoPs has been largely focused on different T-helper populations, however, the data are controversial, and no reliable CoPs are still known. Here we discuss the role of different T-helper populations in TB protection focusing predominantly on Th17, “non-classical” Th1 (Th1*) and “classical” Th1 (cTh1) populations. We analyze how these populations differ besides their effector activity and suggest the hypothesis that: (i) links the protective potential of Th17, Th1*, and cTh1 to their differentiation degree and plasticity; (ii) implies different roles of these populations in response to vaccination, latent TB infection (LTBI), and active TB. One of the clinically relevant outcomes of this hypothesis is that over-stimulating T cells during vaccination and biasing T cell response toward the preferential generation of Th1 are not beneficial. The review sheds new light on the problem of TB CoPs and will help develop better strategies for TB control.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Irina Nikitina
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|