1
|
Jia J, Zhang M, Cao Z, Hu X, Lei S, Zhang Y, Kang X. The rabbit model for spinal tuberculosis: An overview. J Orthop Surg (Hong Kong) 2024; 32:10225536241266703. [PMID: 39033332 DOI: 10.1177/10225536241266703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis infection has emerged as a global public health issue, predominantly manifesting as pulmonary tuberculosis. Bone and joint tuberculosis, with spinal tuberculosis accounting for approximately 50%, represents a significant form of extrapulmonary tuberculosis. Over the past years, there has been a rise in the incidence of spinal tuberculosis, and research concerning this area has gained significant attention. At present, animal models provide a means to investigate the pathogenesis, drug resistance, and novel treatment approaches for spinal tuberculosis. New Zealand rabbits, possessing a comparable anatomical structure to humans and capable of reproducing typical pathological features of human tuberculosis, are extensively employed in spinal tuberculosis research using animal models. This article comprehensively evaluates the strengths, considerations in strain selection, various modelling approaches, and practical applications of the rabbit model in studying spinal tuberculosis based on pertinent literature to guide fundamental research in this field by providing valuable insights into appropriate animal model selection.
Collapse
Affiliation(s)
- Jingwen Jia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Zhenyu Cao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Xuchang Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Shuanhu Lei
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Yizhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| |
Collapse
|
2
|
Logunova N, Kapina M, Kondratieva E, Apt A. The H2-A Class II molecule α/β-chain cis-mismatch severely affects cell surface expression, selection of conventional CD4 + T cells and protection against TB infection. Front Immunol 2023; 14:1183614. [PMID: 37426653 PMCID: PMC10324577 DOI: 10.3389/fimmu.2023.1183614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction To dissect the role of the part of the H2 complex comprised of the MHC-II genes in the control of tuberculosis (TB) infection, we previously established a panel of recombinant congenic mouse strains bearing different segments of the H2 j haplotype on the B6 (H2 b) genetic background. Fine genetic mapping, gene sequencing and assessment of TB phenotypes resulted in identification of the H2-Ab gene as a major factor of TB control. Methods We further narrowed the MHC-II H2 j interval by spotting a new recombination event, sequencing newly established DNA configuration and establishing a mouse strain B6.I-103 in which j/b recombination occurred within the coding sequence of the H2-Ab gene. Results Unexpectedly, a novel H2-Aα b/AβjE0 haplotype provided exclusively high susceptibility to TB challenge. Immunologic analysis revealed an altered CD4+ T-cell selection and maintenance in B6.I-103 mice, as well as seriously impaired expression of the H2-Aαb/Aβj molecule on the surface of antigen presenting cells. Unlike previously reported cases of Class II malfunctioning, the defective phenotype arose not from strong structural mutations, but from regular recombination events within the MHC-II recombination hot spot region. Discussion Our findings provide evidence that Class II α/β-chain cis-allelic mismatches created by regular genetic recombination may severely affect immune system functioning. This issue is discussed in the context of the MHC evolution.
Collapse
|
3
|
Nikonenko BV, Donnikov AE, Logunova NN, Sterzhanova NV, Shchelykalina SP, Kayukova SI. Attenuated Strain of Mycobacterium tuberculosis BN: Characteristics. Bull Exp Biol Med 2023; 174:341-345. [PMID: 36723741 DOI: 10.1007/s10517-023-05705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 02/02/2023]
Abstract
We evaluated the vaccine properties of a novel attenuated strain of M. tuberculosis BN (Mtb BN) and its impact on the gut microbiota in inbred female mice in comparison with a virulent strain Mtb H37Rv and a vaccine strain BCG. The Mtb BN strain demonstrated the highest anti-tuberculosis vaccine effect in I/St mice highly susceptible to tuberculosis infection and the same effect as BCG in mice of the recombinant strain B6.I-100 and in β2 microglobulin gene knockout mice. No adverse effects of the new Mtb BN strain on the gut microbiota of BALB/c mice were revealed. The virulent strain Mtb H37Rv and the vaccine strain BCG decreased the main indicators of normocenosis (Bifidobacterium spp., Bifidobacterium animalis subsp. lactis, Akkermansia, and Erysipelotrichaceae) and led to disappearance of Clostridium perfingens, E. coli, Pseudomonas spp., which contributed to reduction of species diversity and the development of dysbiosis.
Collapse
Affiliation(s)
- B V Nikonenko
- Central Research Institute of Tuberculosis, Moscow, Russia.
| | - A E Donnikov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N N Logunova
- Central Research Institute of Tuberculosis, Moscow, Russia
| | | | - S P Shchelykalina
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S I Kayukova
- Central Research Institute of Tuberculosis, Moscow, Russia
| |
Collapse
|
4
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
5
|
Prolonged infection triggered by dormant Mycobacterium tuberculosis: Immune and inflammatory responses in lungs of genetically susceptible and resistant mice. PLoS One 2020; 15:e0239668. [PMID: 32970762 PMCID: PMC7514034 DOI: 10.1371/journal.pone.0239668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/10/2020] [Indexed: 01/02/2023] Open
Abstract
We developed an approach for substantial attenuation of Mycobacterium tuberculosis by prolonged culturing under gradually acidifying conditions. Bacteria subjected to acidification lost the capacity to form colonies on solid media, but readily resuscitated their growth in the murine host, providing a useful model to study in vivo development of infection mimicking latent and reactivation tuberculosis (TB) in humans. Here we characterize biomarkers of lung pathology and immune responses triggered by such attenuated bacteria in genetically TB-susceptible and resistant mice. In susceptible I/St mice, CFU counts in lungs and spleens were ~1.5-log higher than in resistant B6 mice, accompanied by diffuse pneumonia and excessive lung infiltration with highly activated CD44+CD62L- T-lymphocytes resulting in death between months 7–9 post challenge. B6 mice were characterized by development of local inflammatory foci, higher production of pro-inflammatory IL-6 and IL-11 cytokines and a more balanced T-cell activation in their lungs. CFU counts remained stable in B6 mice during the whole 18-mo observation period, and all mice survived. Thus, we established a mouse model of fatal reactivation TB vs. indefinite mycobacterial possession after identical challenge and characterized the features of immune responses in the lung tissue underlining these polar phenotypes.
Collapse
|
6
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
7
|
Huante MB, Saito TB, Nusbaum RJ, Naqvi KF, Chauhan S, Hunter RL, Actor JK, Rudra JS, Endsley MA, Lisinicchia JG, Gelman BB, Endsley JJ. Small Animal Model of Post-chemotherapy Tuberculosis Relapse in the Setting of HIV Co-infection. Front Cell Infect Microbiol 2020; 10:150. [PMID: 32373548 PMCID: PMC7176873 DOI: 10.3389/fcimb.2020.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/23/2020] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis relapse following drug treatment of active disease is an important global public health problem due to the poorer clinical outcomes and increased risk of drug resistance development. Concurrent infection with HIV, including in those receiving anti-retroviral therapy (ART), is an important risk factor for relapse and expansion of drug resistant Mycobacterium tuberculosis (Mtb) isolates. A greater understanding of the HIV-associated factors driving TB relapse is important for development of interventions that support immune containment and complement drug therapy. We employed the humanized mouse to develop a new model of post-chemotherapy TB relapse in the setting of HIV infection. Paucibacillary TB infection was observed following treatment with Rifampin and Isoniazid and subsequent infection with HIV-1 was associated with increased Mtb burden in the post-drug phase. Organized granulomas were observed during development of acute TB and appeared to resolve following TB drug therapy. At relapse, granulomatous pathology in the lung was infrequent and mycobacteria were most often observed in the interstitium and at sites of diffuse inflammation. Compared to animals with HIV mono-infection, higher viral replication was observed in the lung and liver, but not in the periphery, of animals with post-drug TB relapse. The results demonstrate a potential role for the humanized mouse as an experimental model of TB relapse in the setting of HIV. Long term, the model could facilitate discovery of disease mechanisms and development of clinical interventions.
Collapse
Affiliation(s)
- Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rebecca J Nusbaum
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Kubra F Naqvi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
8
|
Linge I, Petrova E, Dyatlov A, Kondratieva T, Logunova N, Majorov K, Kondratieva E, Apt A. Reciprocal control of Mycobacterium avium and Mycobacterium tuberculosis infections by the alleles of the classic Class II H2-Aβ gene in mice. INFECTION GENETICS AND EVOLUTION 2019; 74:103933. [DOI: 10.1016/j.meegid.2019.103933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
|