1
|
Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M, Zare I. Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta 2024; 275:126099. [PMID: 38640517 DOI: 10.1016/j.talanta.2024.126099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Saadatidizaji
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| |
Collapse
|
2
|
Khizar S, Elaissari A, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A. Advancement in Nanoparticle-Based Biosensors for Point-of-Care In Vitro Diagnostics. Curr Top Med Chem 2022; 22:807-833. [DOI: 10.2174/1568026622666220401160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Recently, there has been great progress in the field of extremely sensitive and precise detection of bioanalytes. The importance of the utilization of nanoparticles in biosensors has been recognized due to their unique properties. Specifically, nanoparticles of gold, silver, and magnetic plus graphene, quantum dots, and nanotubes of carbon are being keenly considered for utilizations within biosensors to detect nucleic acids, glucose, or pathogens (bacteria as well as a virus). Taking advantage of nanoparticles, faster and sensitive biosensors can be developed. Here we review the nanoparticles' contribution to the biosensors field and their potential applications.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Amal Ali Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| |
Collapse
|
3
|
An electrochemical aptasensor for Mycobacterium tuberculosis ESAT-6 antigen detection using bimetallic organic framework. Mikrochim Acta 2021; 188:404. [PMID: 34731314 DOI: 10.1007/s00604-021-05058-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/09/2021] [Indexed: 02/01/2023]
Abstract
A label-free electrochemical aptasensor is reported for sensitive detection of the 6-kDa early secreted antigenic target (ESAT-6). For the first time, the bimetallic organic framework (b-MOF) of Zr-MOF-on-Ce-MOF was decorated with nitrogen-doped graphene (NG) and applied as the matrix for electroactive toluidine blue (Tb) to form the NG@Zr-MOF-on-Ce-MOF@Tb nanohybrid. The prepared nanohybrid with excellent hydrophilicity, dispersibility, and large specific surface exhibited significant electrochemical response. This nanohybrid could be directly used for anchoring ESAT-6 binding aptamers (EBA) through the interaction between the 5'-phosphate group (PO43-) of EBA and Zr4+ of Zr-MOF. The signal response before and after incubating the ESAT-6 antigen has been evaluated by cyclic voltammetry at a scan rate of 100 mV s-1 from - 0.7 to 0.3 V (vs. SCE). Under optimal conditions, the proposed aptasensor displayed a wide linear range from 100 fg mL-1 to 10 ng mL-1 with a limit of detection (LOD) of 12 fg mL-1. The developed method showed good reproducibility with a relative standard deviation (RSD) of 2.27%. The aptasensor showed favorable results in the analysis of the real samples. With these merits, the aptasensor has exceptional potential as a diagnostic tool for tuberculosis in clinical practice.
Collapse
|
4
|
Zohar O, Khatib M, Omar R, Vishinkin R, Broza YY, Haick H. Biointerfaced sensors for biodiagnostics. VIEW 2021. [DOI: 10.1002/viw.20200172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Orr Zohar
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Rawan Omar
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Rotem Vishinkin
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Yoav Y. Broza
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Hossam Haick
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
- School of Advanced Materials and Nanotechnology Xidian University Xi'an Shaanxi P. R. China
| |
Collapse
|
5
|
Gupta S, Bhatter P, Kakkar V. Point-of-care detection of tuberculosis using magnetoresistive biosensing chip. Tuberculosis (Edinb) 2021; 127:102055. [PMID: 33561629 DOI: 10.1016/j.tube.2021.102055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
In this paper, a highly sensitive and specific technique based on the principle of giant magnetoresistance (GMR) has been proposed for the early stage Tuberculosis (TB) diagnostics. This GMR biosensing assay employs monoclonal antibodies against M. tuberculosis specific ESAT-6 antigen with the use of magnetic nanoparticles (MNPs) as labels. MNPs bind to the GMR sensor in presence of ESAT-6 and the binding is proportional to the ESAT-6 protein concentration leading to the change in overall resistance of GMR sensor. GMR biosensor simulation showed that ESAT-6 concentration can be detected in the range of pg/mL in comparison to the other transduction techniques available for ESAT-6 detection and further, the signal strength increased with the increase in the concentration. This work has shown that the GMR biosensing strategy is pertinent for the TB detection at the primitive phases when compared with other magnetic techniques used for TB diagnostics.
Collapse
Affiliation(s)
- Shagun Gupta
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India.
| | - Purva Bhatter
- Post Doc in Tuberculosis Immunology from Indian Institute of Technology, Madras, Chennai, India.
| | - Vipan Kakkar
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India.
| |
Collapse
|
6
|
Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics. Biosens Bioelectron 2020; 177:112949. [PMID: 33429205 DOI: 10.1016/j.bios.2020.112949] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is a widely implementable technique that can be applied to many fields, ranging from disease detection to environmental monitoring. EIS as a biosensing tool allows detection of a broad range of target analytes in point-of-care (POC) and continuous applications. The technique is highly suitable for multimarker detection due to its ability to produce specific frequency responses depending on the target analyte and molecular recognition element (MRE) combination. EIS biosensor development has shown promising results for the medical industry in terms of diagnosis and prognosis for various biomarkers. EIS sensors offer a cost-efficient system and rapid detection times using minimal amounts of sample volumes, while simultaneously not disturbing the sample being studied due to low amplitude perturbations. These properties make the technique highly sensitive and specific. This paper presents a review of EIS biosensing advancements and introduces different detection techniques and MREs. Additionally, EIS's underlying theory and potential surface modification techniques are presented to further demonstrate the technique's ability to produce stable, specific, and sensitive biosensors.
Collapse
|
7
|
Wu K, Saha R, Su D, Krishna VD, Liu J, Cheeran MCJ, Wang JP. Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19. ACS APPLIED NANO MATERIALS 2020; 3:9560-9580. [PMID: 37556271 PMCID: PMC7526334 DOI: 10.1021/acsanm.0c02048] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 05/02/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is a threat to the global healthcare system and economic security. As of July 2020, no specific drugs or vaccines are yet available for COVID-19; a fast and accurate diagnosis for SARS-CoV-2 is essential in slowing the spread of COVID-19 and for efficient implementation of control and containment strategies. Magnetic nanosensing is an emerging topic representing the frontiers of current biosensing and magnetic areas. The past decade has seen rapid growth in applying magnetic tools for biological and biomedical applications. Recent advances in magnetic nanomaterials and nanotechnologies have transformed current diagnostic methods to nanoscale and pushed the detection limit to early-stage disease diagnosis. Herein, this review covers the literature of magnetic nanosensors for virus and pathogen detection before COVID-19. We review popular magnetic nanosensing techniques including magnetoresistance, magnetic particle spectroscopy, and nuclear magnetic resonance. Magnetic point-of-care diagnostic kits are also reviewed aiming at developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak as well as preventing future epidemics. In addition, other platforms that use magnetic nanomaterials as auxiliary tools for enhanced pathogen and virus detection are also covered. The goal of this review is to inform the researchers of diagnostic and surveillance platforms for SARS-CoV-2 and their performances.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department of Chemical Engineering and
Material Science, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Venkatramana D. Krishna
- Department of Veterinary Population
Medicine, University of Minnesota, St.
Paul, Minnesota 55108, United States
| | - Jinming Liu
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Maxim C.-J. Cheeran
- Department of Veterinary Population
Medicine, University of Minnesota, St.
Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Kim SE, Tieu MV, Hwang SY, Lee MH. Magnetic Particles: Their Applications from Sample Preparations to Biosensing Platforms. MICROMACHINES 2020; 11:mi11030302. [PMID: 32183074 PMCID: PMC7142445 DOI: 10.3390/mi11030302] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The growing interest in magnetic materials as a universal tool has been shown by an increasing number of scientific publications regarding magnetic materials and its various applications. Substantial progress has been recently made on the synthesis of magnetic iron oxide particles in terms of size, chemical composition, and surface chemistry. In addition, surface layers of polymers, silica, biomolecules, etc., on magnetic particles, can be modified to obtain affinity to target molecules. The developed magnetic iron oxide particles have been significantly utilized for diagnostic applications, such as sample preparations and biosensing platforms, leading to the selectivity and sensitivity against target molecules and the ease of use in the sensing systems. For the process of sample preparations, the magnetic particles do assist in target isolation from biological environments, having non-specific molecules and undesired molecules. Moreover, the magnetic particles can be easily applied for various methods of biosensing devices, such as optical, electrochemical, and magnetic phenomena-based methods, and also any methods combined with microfluidic systems. Here we review the utilization of magnetic materials in the isolation/preconcentration of various molecules and cells, and their use in various techniques for diagnostic biosensors that may greatly contribute to future innovation in point-of-care and high-throughput automation systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Human IT Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi-do 13509, Korea;
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Sei Young Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
9
|
Sung KJ, Jabbour Al Maalouf Y, Johns QR, Miller EA, Sikes HD. Functional comparison of paper-based immunoassays based on antibodies and engineered binding proteins. Analyst 2020; 145:2515-2519. [PMID: 32163071 DOI: 10.1039/d0an00299b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Binding protein scaffolds, such as rcSso7d, have been investigated for use in diagnostic tests; however, the functional performance of rcSso7d has not yet been studied in comparison to antibodies. Here, we assessed the analyte-binding capabilities of rcSso7d and antibodies on cellulose with samples in buffer and 100% human serum.
Collapse
Affiliation(s)
- Ki-Joo Sung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
10
|
Advances in Magnetoresistive Biosensors. MICROMACHINES 2019; 11:mi11010034. [PMID: 31888076 PMCID: PMC7019276 DOI: 10.3390/mi11010034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023]
Abstract
Magnetoresistance (MR) based biosensors are considered promising candidates for the detection of magnetic nanoparticles (MNPs) as biomarkers and the biomagnetic fields. MR biosensors have been widely used in the detection of proteins, DNAs, as well as the mapping of cardiovascular and brain signals. In this review, we firstly introduce three different MR devices from the fundamental perspectives, followed by the fabrication and surface modification of the MR sensors. The sensitivity of the MR sensors can be improved by optimizing the sensing geometry, engineering the magnetic bioassays on the sensor surface, and integrating the sensors with magnetic flux concentrators and microfluidic channels. Different kinds of MR-based bioassays are also introduced. Subsequently, the research on MR biosensors for the detection of protein biomarkers and genotyping is reviewed. As a more recent application, brain mapping based on MR sensors is summarized in a separate section with the discussion of both the potential benefits and challenges in this new field. Finally, the integration of MR biosensors with flexible substrates is reviewed, with the emphasis on the fabrication techniques to obtain highly shapeable devices while maintaining comparable performance to their rigid counterparts.
Collapse
|