1
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
2
|
Alemdar N, Leijten J, Camci-Unal G, Hjortnaes J, Ribas J, Paul A, Mostafalu P, Gaharwar AK, Qiu Y, Sonkusale S, Liao R, Khademhosseini A. Oxygen-Generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis. ACS Biomater Sci Eng 2016; 3:1964-1971. [DOI: 10.1021/acsbiomaterials.6b00109] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Neslihan Alemdar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences
and Technology, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences
and Technology, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
- Department of Developmental BioEngineering, MIRA Institute for Biomedical
Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Gulden Camci-Unal
- Biomaterials Innovation Research Center, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences
and Technology, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Jesper Hjortnaes
- Biomaterials Innovation Research Center, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences
and Technology, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joao Ribas
- Biomaterials Innovation Research Center, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences
and Technology, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
- Doctoral Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Arghya Paul
- Biomaterials Innovation Research Center, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences
and Technology, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Pooria Mostafalu
- Department
of Electrical and Computer and Engineering, Tufts University, Medford Massachusetts 02155, United States
| | - Akhilesh K. Gaharwar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences
and Technology, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Yiling Qiu
- Cardiac Muscle Research Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sameer Sonkusale
- Department
of Electrical and Computer and Engineering, Tufts University, Medford Massachusetts 02155, United States
| | - Ronglih Liao
- Cardiac Muscle Research Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences
and Technology, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
- Wyss Institute
for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
3
|
Collins JA, Moots RJ, Clegg PD, Milner PI. Resveratrol and N-acetylcysteine influence redox balance in equine articular chondrocytes under acidic and very low oxygen conditions. Free Radic Biol Med 2015; 86:57-64. [PMID: 25998424 PMCID: PMC4562226 DOI: 10.1016/j.freeradbiomed.2015.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
Mature articular cartilage is an avascular tissue characterized by a low oxygen environment. In joint disease, acidosis and further reductions in oxygen levels occur, compromising cartilage integrity.This study investigated how acidosis and very low oxygen levels affect components of the cellular redox system in equine articular chondrocytesand whether the antioxidants resveratrol and N-acetylcysteine could modulate this system. We used articular chondrocytes isolated from nondiseased equine joints and cultured them in a 3-D alginate bead system for 48h in <1, 2, 5, and 21% O2 at pH 7.2 or 6.2 in the absence or presence of the proinflammatory cytokine, interleukin-1β (10ng/ml).In addition, chondrocytes were cultured with resveratrol (10µM) or N-acetylcysteine (NAC) (2mM).Cell viability, glycosaminoglycan (GAG) release, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), GSH:GSSG ratio, and SOD1 and SOD2 protein expression were measured. Very low levels of oxygen (<1%), acidosis (pH 6.2), and exposure to IL-1β led to reductions in cell viability, increased GAG release, alterations in ΔΨm and ROS levels, and reduced GSH:GSSG ratio. In addition, SOD1 and SOD2 protein expressions were reduced. Both resveratrol and NAC partially restored ΔΨm and ROS levels and prevented GAG release and cell loss and normalized SOD1 and SOD2 protein expression. In particular NAC was highly effective at restoring the GSH:GSSG ratio.These results show that the antioxidants resveratrol and N-acetylcysteine can counteract the redox imbalance in articular chondrocytes induced by low oxygen and acidic conditions.
Collapse
Affiliation(s)
- John A Collins
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Cheshire, UK, CH64 7TE
| | - Robert J Moots
- Institute of Ageing and Chronic Disease, University of Liverpool, University Hospital Aintree, Liverpool, UK, L9 7AL
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Cheshire, UK, CH64 7TE
| | - Peter I Milner
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Cheshire, UK, CH64 7TE.
| |
Collapse
|
4
|
Filgueiras R, Del Carlo R, Alves N, Viloria M, McManus C, Castro M, Filgueiras F, Monteiro B, Almeida R, Andrade R. Platelet rich plasma associated with heterologous fresh and thawed chondrocytes on osteochondral lesions of rabbits. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/s0102-09352014000100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chondrocytes obtained from stifle joint of New Zealand White rabbits were cultivated. Half of cells were maintained in culture for later implantation and the others frozen during six months to evaluate viability. A circular osteochondral defect was created in the right stifle of other twenty seven rabbits. The control group (CG) received no treatment. The thawed (TH) and fresh (FH) heterologous groups received, respectively, an implant of cultivated thawed or fresh heterologous chondrocytes associated with platelet rich plasma (PRP). The CG group showed greatest pain and lameness compared to the other groups seven days after the implantation. Microscopically, at 45 and 90 days, the TH and FH groups showed filling with cartilaginous tissue containing chondrocytes surrounded by a dense matrix of glycosaminoglycans. In the CG group, healing occurred with vascularized fibrous connective tissue without integration to the subchondral bone. Cryopreserved heterologous chondrocytes were viable for implantation and healing of osteochondral lesions; the association with PRP allows the fixation of cells in the lesion and offers growth factors which accelerates repair with tissue similar to articular hyaline cartilage.
Collapse
|
5
|
Collins J, Moots R, Winstanley R, Clegg P, Milner P. Oxygen and pH-sensitivity of human osteoarthritic chondrocytes in 3-D alginate bead culture system. Osteoarthritis Cartilage 2013; 21:1790-8. [PMID: 23850530 PMCID: PMC3807787 DOI: 10.1016/j.joca.2013.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the effect of alterations in physical parameters such as oxygen and pH on processes associated with cellular redox balance in osteoarthritic chondrocytes. METHOD Human osteoarthritic chondrocytes (HOAC) were isolated from total knee arthroplasty samples and cultured in 3-D alginate beads in four different oxygen tensions (<1%, 2%, 5% and 21% O2), at pH 7.2 and 6.2 and in the presence or absence of 10 ng/ml, interleukin-1β (IL-1β). Cell viability, media glycosaminoglycan (GAG) levels, media nitrate/nitrate levels, active matrix metalloproteinase (MMP)-13 and intracellular adenosine triphosphate (ATPi) were measured over a 96-h time course. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential, intracellular pH and reduced/oxidised glutathione (GSH/GSSG) were additionally measured after 48-h incubation under these experimental conditions. RESULTS Hypoxia (2% O2) and anoxia (<1% O2), acidosis (pH 6.2) and 10 ng/ml IL-1β reduced HOAC cell viability and increased GAG media levels. Acidosis and IL-1β increased nitrite/nitrate release, but increases were moderate at 2% O2 and significantly reduced at <1% O2. ATPi was significantly reduced following hypoxia and anoxia and acidosis. At 48 h cellular ROS levels were increased by acidosis and IL-1β but reduced in hypoxia and anoxia. Mitochondrial membrane potential was reduced in low oxygen, acidosis and IL-1β. Anoxia also resulted in intracellular acidosis. GSH/GSSG ratio was reduced in low oxygen conditions, acidosis and IL-1β. CONCLUSIONS This study shows that oxygen and pH affect elements of the redox system in HOAC including cellular anti-oxidants, mitochondrial membrane potential and ROS levels.
Collapse
Affiliation(s)
- J.A. Collins
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - R.J. Moots
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, University Hospital, Aintree, Liverpool L9 7AL, UK
| | - R. Winstanley
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - P.D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - P.I. Milner
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK,Address correspondence and reprint requests to: P.I. Milner, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK. Tel: 44-151-7946041; Fax: 44-151-7946034.
| |
Collapse
|
6
|
Larsen BE, Sandvik JA, Karlsen J, Pettersen EO, Melvik JE. Oxygen consumption in T-47D cells immobilized in alginate. Cell Prolif 2013; 46:469-81. [PMID: 23869767 DOI: 10.1111/cpr.12041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/06/2013] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Encapsulation or entrapment of cells is increasingly being used in a wide variety of scientific studies for tissue engineering and development of novel medical devices. The effect on cell metabolism of such systems is, in general, not well characterized. In this work, a simple system for monitoring respiration of cells embedded in 3-D alginate cultures was characterized. MATERIALS AND METHODS T-47D cells were cultured in alginate gels. Oxygen concentration curves were recorded within cell-gel constructs using two different sensor systems, and cell viability and metabolic state were characterized using confocal microscopy and commercially available stains. RESULTS At sufficient depth within constructs, recorded oxygen concentration curves were not significantly influenced by influx of oxygen through cell-gel layers and oxygen consumption rate could be calculated simply by dividing oxygen loss in the system per time, by the number of cells. This conclusion was supported by a 3-D numeric simulation. For the T-47D cells, the oxygen consumption rate was found to be 61 ± 6 fmol/cell/h, 3-4 times less than has previously been found for these cells, when grown exponentially in monolayer culture. CONCLUSIONS The experimental set-up presented here may be varied in multiple ways by changing the cell-gel construct 3-D microenvironment, easily allowing investigation of a variety of factors on cell respiration.
Collapse
Affiliation(s)
- B E Larsen
- School of Pharmacy, Universiy of Oslo, Oslo, 0316, Norway.
| | | | | | | | | |
Collapse
|
7
|
Camci-Unal G, Alemdar N, Annabi N, Khademhosseini A. Oxygen Releasing Biomaterials for Tissue Engineering. POLYM INT 2013; 62:843-848. [PMID: 23853426 DOI: 10.1002/pi.4502] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Due to the increasing demand to generate thick and vascularized tissue engineered constructs, novel strategies are currently being developed. An emerging example is the generation of oxygen-releasing biomaterials to tackle mass transport and diffusion limitations within engineered tissue-like constructs. Biomaterials containing oxygen releasing molecules can be fabricated in various forms such as, hybrid thin films, microparticles, or three dimensional (3D) scaffolds. In this perspective, we will summarize various oxygen-releasing reagents and their potential applications in regenerative engineering. Moreover, we will review the main approaches to fabricate oxygen-releasing biomaterials for a range of tissue engineering applications.
Collapse
Affiliation(s)
- Gulden Camci-Unal
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | | | | | | |
Collapse
|
8
|
Kemppainen JM, Hollister SJ. Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials 2010; 31:279-87. [DOI: 10.1016/j.biomaterials.2009.09.041] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/11/2009] [Indexed: 11/26/2022]
|
9
|
Peansukmanee S, Vaughan-Thomas A, Carter SD, Clegg PD, Taylor S, Redmond C, Mobasheri A. Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo. J Orthop Res 2009; 27:529-35. [PMID: 18973239 DOI: 10.1002/jor.20772] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Articular chondrocytes exist in an environment lacking in oxygen and nutrients due to the avascular nature of cartilage. The main source of metabolic energy is glucose, which is taken up by glucose transporters (GLUTs). In diseased joints, oxygen tensions and glucose availability alter as a result of inflammation and changes in vascularisation. Accordingly, in this study we examined the effects of hypoxia and the hypoxia mimetic cobalt chloride (CoCl(2)) on glucose transport in equine chondrocytes and compared expression of the hypoxia responsive GLUT1 gene in normal and diseased cartilage. Monolayers of equine chondrocytes were exposed to 20% O(2), 1% O(2), CoCl(2) (75 microM), or a combination of 1% O(2) and CoCl(2). Glucose uptake was measured using 2-deoxy-D-[2,6-(3)H] glucose. GLUT1 protein and mRNA expression were determined by FACS analysis and qPCR, respectively. GLUT1 mRNA expression in normal and diseased cartilage was analyzed using explants derived from normal, OA, and OCD cartilage. Chondrocytes under hypoxic conditions exhibited a significantly increased glucose uptake as well as upregulated GLUT1 protein expression. GLUT1 mRNA expression significantly increased in combined hypoxia-CoCl(2) treatment. Analysis of clinical samples indicated a significant reduction in GLUT1 mRNA in OA samples. In OCD samples GLUT1 expression also decreased but did not reach statistical significance. The increase in glucose uptake and GLUT1 expression under hypoxic conditions confirms that hypoxia alters the metabolic requirements of chondrocytes. The altered GLUT1 mRNA expression in diseased cartilage with significance in OA suggests that reduced GLUT1 may contribute to the failure of OA cartilage repair.
Collapse
|
10
|
Lee HJ, Choi BH, Min BH, Park SR. Low-intensity ultrasound inhibits apoptosis and enhances viability of human mesenchymal stem cells in three-dimensional alginate culture during chondrogenic differentiation. ACTA ACUST UNITED AC 2007; 13:1049-57. [PMID: 17428192 DOI: 10.1089/ten.2006.0346] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many studies have investigated optimal chondrogenic conditions, but only a few of them have addressed their effects on cell viability or the methods to enhance it. This study investigated the effect of low-intensity ultrasound (LIUS), a well-known chondrogenic inducer, on the viability of human mesenchymal stem cells (hMSCs) during chondrogenic differentiation in three-dimensional (3-D) alginate culture. The hMSCs/alginate layer was cultured in a chondrogenic defined medium and treated with transforming growth factor-beta1 (TGF-beta1) and/or LIUS for 2 weeks. Along with chondrogenic differentiation for 2 weeks, the 3-D alginate culture and TGF-beta1 treatment resulted in the decrease of cell viability, which appeared to be mediated by apoptosis. In contrast, co-treatment with LIUS clearly enhanced cell viability and inhibited apoptosis under the same conditions. The effect of LIUS on the apoptotic event was further demonstrated by changes in the expression of apoptosis/viability related genes of p53, bax, bcl-2, and PCNA. These results suggest that the LIUS treatment could be a valuable tool in cartilage tissue engineering using MSCs as it enhances cell viability and directs the chondrogenic differentiation process, its well-known activity.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | | | | |
Collapse
|
11
|
Schneider N, Mouithys-Mickalad AL, Lejeune JP, Deby-Dupont GP, Hoebeke M, Serteyn DA. Synoviocytes, not chondrocytes, release free radicals after cycles of anoxia/re-oxygenation. Biochem Biophys Res Commun 2005; 334:669-73. [PMID: 16036131 DOI: 10.1016/j.bbrc.2005.06.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 06/24/2005] [Indexed: 11/29/2022]
Abstract
By oxymetry and electron paramagnetic resonance (EPR), we investigated the effects of repeated anoxia/re-oxygenation (A/R) periods on the respiration and production of free radicals by synoviocytes (rabbit HIG-82 cell line and primary equine synoviocytes) and equine articular chondrocytes. Three periods of 20 min anoxia followed by re-oxygenation were applied to 10(7)cells; O(2) consumption was measured before anoxia and after each re-oxygenation. After the last A/R, cellular free radical formation was investigated by EPR spectroscopy with spin trapping technique (n=3 for each cell line). Both types of synoviocytes showed a high O(2) consumption, which was slowered after anoxia. By EPR with the spin trap POBN, we proved a free radical formation. Results were similar for equine and rabbit synoviocytes. For chondrocytes, we observed a low O(2) consumption, unchanged by anoxia, and no free radical production. These observations suggest an oxidant activity of synoviocytes, potentially important for the onset of osteoarthritis.
Collapse
Affiliation(s)
- Nicole Schneider
- Department of Clinical Sciences, Large Animal Surgery, Faculty of Veterinary Medicine, University of Liège, B41, Sart Tilman, 4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|