1
|
Volokhov DV, Zagorodnyaya TA, Furtak VA, Nattanmai G, Randall L, Jose S, Gao Y, Gulland FM, Eisenberg T, Delmonte P, Blom J, Mitchell KK. Neisseria montereyensis sp. nov., Isolated from Oropharynx of California Sea Lion (Zalophus californianus): Genomic, Phylogenetic, and Phenotypic Study. Curr Microbiol 2023; 80:253. [PMID: 37354372 DOI: 10.1007/s00284-023-03380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
A novel Neisseria strain, designated CSL10203-ORH2T, was isolated from the oropharynx of a wild California sea lion (Zalophus californianus) that was admitted to The Marine Mammal Center in California, USA. The strain was originally cultured from an oropharyngeal swab on BD Phenylethyl Alcohol (PEA) agar with 5% sheep blood under aerobic conditions. Phylogenetic analyses based on 16S rRNA, rplF, and rpoB gene sequences and the core genome sequences indicated that the strain was most closely related to only N. zalophi CSL 7565T. The average nucleotide identity and digital DNA-DNA hybridization values between strain CSL10203-ORH2T and the closely related species N. zalophi CSL 7565T were 89.84 and 39.70%, respectively, which were significantly lower than the accepted species-defined thresholds for describing novel prokaryotic species at the genomic level. Both type strains were phenotypically similar but can be easily and unambiguously distinguished between each other by the analysis of their housekeeping genes, e.g., rpoB, gyrB, or argF. The major fatty acids in both type strains were C12:0, C16:0, C16:1-c9, and C18:1-c11. Based on the genomic, phenotypic, and phylogenetic properties, the novel strain represents a novel species of the genus Neisseria, for which the name Neisseria montereyensis sp. nov. with the type strain CSL10203-ORH2T (= DSM 114706T = CCUG 76428T = NCTC 14721T) is proposed. The genome G + C content is 45.84% and the complete draft genome size is 2,310,535 bp.
Collapse
Affiliation(s)
- Dmitriy V Volokhov
- Center for Biologics Evaluation and Research, Laboratory of Method Development, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Building 52, Room 1120, Silver Spring, MD, 20993-0002, USA.
| | - Tatiana A Zagorodnyaya
- Center for Biologics Evaluation and Research, Laboratory of Method Development, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Building 52, Room 1120, Silver Spring, MD, 20993-0002, USA
| | - Vyacheslav A Furtak
- Center for Biologics Evaluation and Research, Laboratory of Method Development, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Building 52, Room 1120, Silver Spring, MD, 20993-0002, USA
| | - Geetha Nattanmai
- Bacteriology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY, 12208, USA
| | - Linnell Randall
- Bacteriology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY, 12208, USA
| | - Sherly Jose
- Bacteriology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY, 12208, USA
| | - Yamei Gao
- Center for Biologics Evaluation and Research, Laboratory of Method Development, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Building 52, Room 1120, Silver Spring, MD, 20993-0002, USA
| | - Frances M Gulland
- Wildlife Health Center, University of California, Davis, CA, 95616, USA
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), Schubertstrasse 60, 35392, Giessen, Germany
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Strasse 89-91, 35392, Giessen, Germany
| | - Pierluigi Delmonte
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Campus Drive, College Park, MD, 20740, USA
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Heinrich Buff Ring 58, 35392, Giessen, Germany
| | - Kara K Mitchell
- Bacteriology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY, 12208, USA
| |
Collapse
|
2
|
Jin S, Guan T, Hu M, Li W, Liu Y. Isolation, identification and virulence gene characterization of Aeromona dhakensis isolated from sea lion (Zalophus californianus). Lett Appl Microbiol 2022; 74:932-940. [PMID: 35239198 DOI: 10.1111/lam.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Species of Aeromonas are ubiquitous pathogens of fish and aquatic animals and can infect humans and other animals through the food chain. However, there are few reports of marine mammalian infections. In 2020, a sea lion (Zalophus californianus) died acutely at an aquarium in Harbin, Heilongjiang Province, China. In order to explore the cause of death, we dissected the animal and observed pathological changes. Ogans were aseptically collected and used for bacterial isolation and culture. This revealed that the sea lion had died of sepsis caused by a bacterial infection. Isolated bacteria were investigated by morphology, biochemical phenotype and molecular identification, and this determined the pathogen as A. dhakensis. The isolate contained six virulence genes, hlyA, aerA, act, lafA, ela, fla, and was susceptible to most antibiotics. This is the first report of A. dhakensis associated with septicemia in pinnipeds and a description of its virulence and resistance profiles. Its presence in aquatic environments poses a potential threat to marine mammals.
Collapse
Affiliation(s)
- Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Tongxu Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Mengxin Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Wanying Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
5
|
Liu G, Tang CM, Exley RM. Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. MICROBIOLOGY-SGM 2015; 161:1297-1312. [PMID: 25814039 DOI: 10.1099/mic.0.000086] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Neisseria contains the important pathogens Neisseria meningitidis and Neisseria gonorrhoeae. These Gram-negative coccoid bacteria are generally thought to be restricted to humans and inhabit mucosal surfaces in the upper respiratory and genito-urinary tracts. While the meningococcus and gonococcus have been widely studied, far less attention has been paid to other Neisseria species. Here we review current knowledge of the distribution of commensal Neisseria in humans and other hosts. Analysis of the microbiome has revealed that Neisseria is an abundant member of the oropharyngeal flora, and we review its potential impact on health and disease. Neisseria also exhibit remarkable diversity, exhibiting both coccoid and rod-shaped morphologies, as well as environmental strains which are capable of degrading complex organic molecules.
Collapse
Affiliation(s)
- Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
6
|
Embers ME, Doyle LA, Whitehouse CA, Selby EB, Chappell M, Philipp MT. Characterization of a Moraxella species that causes epistaxis in macaques. Vet Microbiol 2010; 147:367-75. [PMID: 20667430 DOI: 10.1016/j.vetmic.2010.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
Bacteria of the genus Moraxella have been isolated from a variety of mammalian hosts. In a prior survey of bacteria that colonize the rhesus macaque nasopharynx, performed at the Tulane National Primate Research Center, organisms of the Moraxella genus were isolated from animals with epistaxis, or "bloody nose syndrome." They were biochemically identified as Moraxella catarrhalis, and cryopreserved. Another isolate was obtained from an epistatic cynomolgus macaque at the U.S. Army Medical Research Institute of Infectious Diseases. Based on differences in colony and cell morphologies between rhesus and human M. catarrhalis isolates, we hypothesized that the nonhuman primate Moraxella might instead be a different species. Despite morphological differences, the rhesus isolates, by several biochemical tests, were indistinguishable from M. catarrhalis. Analysis of the cynomolgus isolate by Vitek 2 Compact indicated that it belonged to a Moraxella group, but could not differentiate among species. However, sequencing of the 16S ribosomal RNA gene from four representative rhesus isolates and the cynomolgus isolate showed closest homology to Moraxella lincolnii, a human respiratory tract inhabitant, with 90.16% identity. To examine rhesus macaques as potential hosts for M. catarrhalis, eight animals were inoculated with human M. catarrhalis isolates. Only one of the animals was colonized and showed disease, whereas four of four macaques became epistatic after inoculation with the rhesus Moraxella isolate. The nasopharyngeal isolates in this study appear uniquely adapted to a macaque host and, though they share many of the phenotypic characteristics of M. catarrhalis, appear to form a genotypically distinct species.
Collapse
Affiliation(s)
- Monica E Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, 18703 Three Rivers Road, Covington, LA, USA.
| | | | | | | | | | | |
Collapse
|