1
|
Hizlisoy H, Dishan A, Bekdik IK, Barel M, Koskeroglu K, Ozkaya Y, Aslan O, Yilmaz OT. Candida albicans in the oral cavities of pets: biofilm formation, putative virulence, antifungal resistance profiles and classification of the isolates. Int Microbiol 2024:10.1007/s10123-024-00552-4. [PMID: 38955904 DOI: 10.1007/s10123-024-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
The study aimed to investigate Candida albicans presence, antifungal resistance, biofilm formation, putative virulence genes, and molecular characterization in oral samples of dogs and cats. A total of 239 oral samples were collected from cats and dogs of various breeds and ages at Erciyes University, Faculty of Veterinary Medicine Clinics, between May 2017 and April 2018. Among 216 isolates obtained, 15 (6.95%) were identified as C. albicans, while 8 (3.7%) were non-albicans Candida species. Antifungal susceptibility testing revealed sensitivities to caspofungin, fluconazole, and flucytosine in varying proportions. Molecular analysis indicated the presence of fluconazole and caspofungin resistance genes in all C. albicans isolates. Additionally, virulence genes ALS1, HWP1, and HSP90 showed variable presence. Biofilm formation varied among isolates, with 46.7% strong, 33.3% moderate, and 20% weak producers. PCA analysis categorized isolates into two main clusters, with some dog isolates grouped separately. The findings underscore the significance of oral care and protective measures in pets due to C. albicans prevalence, biofilm formation, virulence factors, and antifungal resistance in their oral cavity, thereby aiding clinical diagnosis and treatment in veterinary medicine.
Collapse
Affiliation(s)
- Harun Hizlisoy
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciye University, Kayseri, Türkiye.
| | - Adalet Dishan
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Bozok University, Yozgat, Türkiye
| | - Ilknur Karaca Bekdik
- Faculty of Veterinary Medicine, Department of Internal Medicine, Erciyes University, Kayseri, Türkiye
| | - Mukaddes Barel
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciye University, Kayseri, Türkiye
| | | | - Yasin Ozkaya
- Health Sciences Institute, Erciyes University, Kayseri, Türkiye
| | - Oznur Aslan
- Faculty of Veterinary Medicine, Department of Internal Medicine, Erciyes University, Kayseri, Türkiye
| | | |
Collapse
|
2
|
Olabode IR, Sachivkina N, Karamyan A, Mannapova R, Kuznetsova O, Bobunova A, Zhabo N, Avdonina M, Gurina R. In Vitro Activity of Farnesol against Malassezia pachydermatis Isolates from Otitis Externa Cases in Dogs. Animals (Basel) 2023; 13:ani13071259. [PMID: 37048514 PMCID: PMC10093264 DOI: 10.3390/ani13071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic otitis externa of dogs is a significant problem due to the prevalence and complexity of the treatment of such animals. There is evidence that in 60-80% of cases of infectious diseases microorganisms located in the biofilm phenotype play the main role. Microorganisms in the biofilm phenotype have a number of advantages, the most significant of which is considered to be increased resistance to various external factors. Among them, a special place is occupied by resistance to antibiotics. In recent decades, research has been conducted at an increasing scale on the role of biofilm infections in various pathologies in veterinary medicine. The etiology and therapy of dog otitis externa caused by Malassezia pachydermatis biofilm has not been fully studied. This is why we consider relevant the scientific and practical aspects of research on the etiology and therapy of dog otitis externa from the position of biofilm infection. In this work, it has been statistically proven that there is a relationship between the optical density of Malassezia pachydermatis biofilms and their sensitivity to drugs, and this relationship is statistically significant. In addition, we have demonstrated that Farnesol has a good antibiofilm effect at a concentration of more 1.6 μM/mL (24% OD decrease of biofilm), and its highest antibiofilm effect (71-55%-more than a half) was observed at a concentration of 200-12.5 μM/mL.
Collapse
Affiliation(s)
- Ifarajimi Rapheal Olabode
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Arfenia Karamyan
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ramziya Mannapova
- Department of Veterinary Medicine, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Olga Kuznetsova
- Department of Biochemistry T.T. Berezov, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anna Bobunova
- Department of Foreign Languages, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Natallia Zhabo
- Department of Foreign Languages, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Marina Avdonina
- Department of Linguistics and Intercultural Communication, Moscow State Linguistic University, 119034 Moscow, Russia
| | - Regina Gurina
- Department of Technosphere Safety, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
3
|
Hobi S, Cafarchia C, Romano V, Barrs VR. Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals. J Fungi (Basel) 2022; 8:jof8070708. [PMID: 35887463 PMCID: PMC9324274 DOI: 10.3390/jof8070708] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Malassezia spp. are commensals of the skin, oral/sinonasal cavity, lower respiratory and gastrointestinal tract. Eighteen species have been recovered from humans, other mammals and birds. They can also be isolated from diverse environments, suggesting an evolutionary trajectory of adaption from an ecological niche in plants and soil to the mucocutaneous ecosystem of warm-blooded vertebrates. In humans, dogs and cats, Malassezia-associated dermatological conditions share some commonalities. Otomycosis is common in companion animals but is rare in humans. Systemic infections, which are increasingly reported in humans, have yet to be recognized in animals. Malassezia species have also been identified as pathogenetic contributors to some chronic human diseases. While Malassezia species are host-adapted, some species are zoophilic and can cause fungemia, with outbreaks in neonatal intensive care wards associated with temporary colonization of healthcare worker’s hands from contact with their pets. Although standardization is lacking, susceptibility testing is usually performed using a modified broth microdilution method. Antifungal susceptibility can vary depending on Malassezia species, body location, infection type, disease duration, presence of co-morbidities and immunosuppression. Antifungal resistance mechanisms include biofilm formation, mutations or overexpression of ERG11, overexpression of efflux pumps and gene rearrangements or overexpression in chromosome 4.
Collapse
Affiliation(s)
- Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Valentina Romano
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| |
Collapse
|
4
|
Antifungal Resistance Regarding Malassezia pachydermatis: Where Are We Now? J Fungi (Basel) 2020; 6:jof6020093. [PMID: 32630397 PMCID: PMC7345795 DOI: 10.3390/jof6020093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Malassezia pachydermatis is a yeast inhabiting the skin and ear canals in healthy dogs. In the presence of various predisposing conditions it can cause otitis and dermatitis, which are treated with multiple antifungal agents, mainly azole derivatives. This manuscript aims to review the available evidence regarding the occurrence of resistance phenomena in this organism. Various findings support the capacity of M. pachydermatis for developing resistance. These include some reports of treatment failure in dogs, the reduced antifungal activity found against yeast isolates sampled from dogs with exposure to antifungal drugs and strains exposed to antifungal agents in vitro, and the description of resistance mechanisms. At the same time, the data reviewed may suggest that the development of resistance is a rare eventuality in canine practice. For example, only three publications describe confirmed cases of treatment failure due to antifungal resistance, and most claims of resistance made by past studies are based on interpretive breakpoints that lack sound support from the clinical perspective. However, it is possible that resistant cases are underreported in literature, perhaps due to the difficulty of obtaining a laboratory confirmation given that a standard procedure for susceptibility testing of M. pachydermatis is still unavailable. These considerations highlight the need for maintaining surveillance for the possible emergence of clinically relevant resistance, hopefully through a shared strategy put in place by the scientific community.
Collapse
|
5
|
Tresch M, Mevissen M, Ayrle H, Melzig M, Roosje P, Walkenhorst M. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review. BMC Vet Res 2019; 15:174. [PMID: 31133058 PMCID: PMC6537371 DOI: 10.1186/s12917-019-1854-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background Medicinal plants have been used traditionally since centuries for wound care and treatment of skin diseases both in human and animals. Skin diseases are one of the most common reasons for owners to take their dog to the veterinarian. The demands for treatment and prophylaxis of these diseases are broad. A wide range of bacteria including antibiotic-resistant bacteria can be involved, making the treatment challenging and bear an anthropo-zoonotic potential. The aim of this review is to systematically evaluate based on recent scientific literature, the potential of four medicinal plants to enrich the therapeutic options in pyoderma, canine atopic dermatitis, otitis externa, wounds and dermatophytosis in dogs. Results Based on four books and a survey among veterinarians specialized in phytotherapy, four medicinal plants were chosen as the subject of this systematic review: Calendula officinalis L. (Marigold), Hypericum perforatum L. agg. (St. John’s Wort), Matricaria chamomilla L. (syn. Matricaria recutita L., Chamomile) and Salvia officinalis L. (Sage). According to the PRISMA statement through literature research on two online databases a total of 8295 publications was screened and narrowed down to a final 138 publications for which full-text documents were analyzed for its content resulting in a total of 145 references (21 clinical, 24 in vivo and 100 in vitro references). Conclusions All four plants were proven to have antibacterial and antifungal effects of a rather broad spectrum including antibiotic-resistant bacteria. This makes them an interesting new option for the treatment of pyoderma, otitis externa, infected wounds and dermatophytosis. Marigold, St. John’s Wort and Chamomile showed wound-healing properties and are thus promising candidates in line to fill the therapeutic gap in canine wound-healing agents. St. John’s Wort and Chamomile also showed anti-inflammatory and other beneficial effects on healthy skin. Due to the wide range of beneficial effects of these medicinal plants, they should be taken into account for the treatment of dermatologic diseases in dogs at least in future clinical research. Electronic supplementary material The online version of this article (10.1186/s12917-019-1854-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milena Tresch
- Division Veterinary Pharmacology & Toxicology, Department Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Meike Mevissen
- Division Veterinary Pharmacology & Toxicology, Department Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Hannah Ayrle
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Postbox 219, 5070, Frick, Switzerland
| | - Matthias Melzig
- Dahlem Centre of Plant Sciences, Institute of Pharmacy, Freie Universität Berlin, Koenigin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Michael Walkenhorst
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Postbox 219, 5070, Frick, Switzerland.
| |
Collapse
|
6
|
Methodological Issues in Antifungal Susceptibility Testing of Malassezia pachydermatis. J Fungi (Basel) 2017; 3:jof3030037. [PMID: 29371554 PMCID: PMC5715951 DOI: 10.3390/jof3030037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
Reference methods for antifungal susceptibility testing of yeasts have been developed by the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antibiotic Susceptibility Testing (EUCAST). These methods are intended to test the main pathogenic yeasts that cause invasive infections, namely Candida spp. and Cryptococcusneoformans, while testing other yeast species introduces several additional problems in standardization not addressed by these reference procedures. As a consequence, a number of procedures have been employed in the literature to test the antifungal susceptibility of Malassezia pachydermatis. This has resulted in conflicting results. The aim of the present study is to review the procedures and the technical parameters (growth media, inoculum preparation, temperature and length of incubation, method of reading) employed for susceptibility testing of M. pachydermatis, and when possible, to propose recommendations for or against their use. Such information may be useful for the future development of a reference assay.
Collapse
|
7
|
Ngo HX, Garneau-Tsodikova S, Green KD. A complex game of hide and seek: the search for new antifungals. MEDCHEMCOMM 2016; 7:1285-1306. [PMID: 27766140 PMCID: PMC5067021 DOI: 10.1039/c6md00222f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fungal infections directly affect millions of people each year. In addition to the invasive fungal infections of humans, the plants and animals that comprise our primary food source are also susceptible to diseases caused by these eukaryotic microbes. The need for antifungals, not only for our medical needs, but also for use in agriculture and livestock causes a high demand for novel antimycotics. Herein, we provide an overview of the most commonly used antifungals in medicine and agriculture. We also present a summary of the recent progress (from 2010-2016) in the discovery/development of new agents against fungal strains of medical/agricultural relevance, as well as information related to their biological activity, their mode(s) of action, and their mechanism(s) of resistance.
Collapse
Affiliation(s)
- Huy X. Ngo
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| | - Keith D. Green
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| |
Collapse
|
8
|
Agar Diffusion Procedures for Susceptibility Testing of Malassezia pachydermatis: Evaluation of Mueller-Hinton Agar Plus 2 % Glucose and 0.5 µg/ml Methylene Blue as the Test Medium. Mycopathologia 2015; 180:153-8. [PMID: 26138434 DOI: 10.1007/s11046-015-9913-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Aim of this study was to verify whether Mueller-Hinton agar supplemented with 2 % glucose and methylene blue (MH-GM), which is used for disk diffusion susceptibility testing of Candida species by the Clinical and Laboratory Standards Institute, is suitable for testing Malassezia pachydermatis. A variant of the disk diffusion procedure utilizing a 9-mm tablet was used to test 31 isolates against clotrimazole and miconazole using MH-GM as test medium. The MH-GM agar optimally supported the growth of all M. pachydermatis isolates, provided that the yeast inoculum was prepared with a lipid source (Tween 40 and 80). Zone edges were frequently definite and clear, facilitating the measurement of zone size and minimizing subjectivity. The inhibition zones correlated with MIC values obtained in a broth dilution assay. The agar diffusion method with MH-GM as the test medium appears as a suitable procedure for testing the susceptibility of M. pachydermatis to CTZ and MCZ in clinical laboratories. This test format may allow processing a large number of isolates in epidemiological studies. This may in turn facilitate clarifying to what extent the problem "drug resistance" accounts for cases of treatment failure in dogs with Malassezia otitis and dermatitis.
Collapse
|
9
|
Jerzsele Á, Gyetvai B, Csere I, Gálfi P. Biofilm formation in Malassezia pachydermatis strains isolated from dogs decreases susceptibility to ketoconazole and itraconazole. Acta Vet Hung 2014; 62:473-80. [PMID: 25410389 DOI: 10.1556/avet.2014.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malassezia pachydermatis is a commonly isolated yeast in veterinary dermatology that can produce biofilms in vitro and in vivo, lowering its susceptibility to antimicrobial drugs. The aim of this study was to determine and compare the in vitro susceptibility of planktonic cells and biofilms of M. pachydermatis isolates to ketoconazole and itraconazole. The presence of biofilm formation was confirmed by crystal violet staining and absorbance measurement at 595 nm wavelength, and by a scanning electron microscopy method. Cell viability was determined by the Celltiter 96 Aqueous One solution assay containing a water-soluble tetrazolium compound (MTS) with absorbance measurement at 490 nm. Planktonic cell minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) of ketoconazole and itraconazole were very low: MIC90 and MFC90 were 0.032 and 0.125 μg/ml for ketoconazole, while 0.063 and 0.25 μg/ml for itraconazole, respectively. Also, the half maximal effective concentrations (EC50) of itraconazole were higher for planktonic cells and biofilms compared to ketoconazole. The EC50 values of ketoconazole were 18-169 times higher and those of itraconazole 13-124 times higher for biofilms than for planktonic cells. Biofilm EC50 levels exceeded MICs 103-2060 times for ketoconazole and 84-1400 times for itraconazole. No significant difference was found between these values of the two substances. In conclusion, biofilms of all examined M. pachydermatis strains were much less susceptible to ketoconazole and itraconazole than their planktonic forms.
Collapse
Affiliation(s)
- Ákos Jerzsele
- 1 Szent István University Department of Pharmacology and Toxicology, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - Béla Gyetvai
- 2 Alpha-Vet Veterinary Ltd. Székesfehérvár Hungary
| | | | - Péter Gálfi
- 1 Szent István University Department of Pharmacology and Toxicology, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| |
Collapse
|
10
|
In vitro amphotericin B susceptibility of Malassezia pachydermatis determined by the CLSI broth microdilution method and Etest using lipid-enriched media. Antimicrob Agents Chemother 2014; 58:4203-6. [PMID: 24752258 DOI: 10.1128/aac.00091-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the in vitro amphotericin B susceptibility of 60 Malassezia pachydermatis isolates by the CLSI broth microdilution method and the Etest using lipid-enriched media. All isolates were susceptible at MICs of ≤ 1 μg/ml, confirming the high activity of amphotericin B against this yeast species. Overall, the essential agreement between the tested methods was high (80% and 96.7% after 48 h and 72 h, respectively), and all discrepancies were regarded as nonsubstantial.
Collapse
|
11
|
Castelo-Branco DSCM, Brilhante RSN, Paiva MAN, Teixeira CEC, Caetano EP, Ribeiro JF, Cordeiro RA, Sidrim JJC, Monteiro AJ, Rocha MFG. Azole-resistantCandida albicansfrom a wild Brazilian porcupine (Coendou prehensilis): a sign of an environmental imbalance? Med Mycol 2013; 51:555-60. [DOI: 10.3109/13693786.2012.752878] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
12
|
Yurayart C, Nuchnoul N, Moolkum P, Jirasuksiri S, Niyomtham W, Chindamporn A, Kajiwara S, Prapasarakul N. Antifungal agent susceptibilities and interpretation of Malassezia pachydermatis and Candida parapsilosis isolated from dogs with and without seborrheic dermatitis skin. Med Mycol 2013; 51:721-30. [PMID: 23547880 DOI: 10.3109/13693786.2013.777165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Malassezia pachydermatis and Candida parapsilosis are recognized as commensal yeasts on the skin of healthy dogs but also causative agents of eborrheic dermatitis, especially in atopic dogs. We determined and compared the susceptibility levels of yeasts isolated from dogs with and without seborrheic dermatitis (SD) using the disk diffusion method (DD) for itraconazole (ITZ), ketoconazole (KTZ), nystatin (NYS), terbinafine (TERB) and 5-fluorocytosine (5-FC) and the broth microdilution method (BMD) for ITZ and KTZ. The reliability between the methods was assessed using an agreement analysis and linear regression. Forty-five M. pachydermatis and 28 C. parapsilosis isolates were identified based on physiological characteristics and an approved molecular analysis. By DD, all tested M. pachydermatis isolates were susceptible to ITZ, KTZ, NYS and TERB but resistant to 5-FC. Only 46 - 60% of the tested C. parapsilosis isolates were susceptible to KTZ, TERB and 5-FC, but ITZ and NYS were effective against all. By BMD, over 95% of M. pachydermatis isolates were susceptible to KTZ and ITZ with an MIC90 < 0.03 and 0.12 μg/ml, respectively. The frequency of KTZ- and ITZ-resistant C. parapsilosis was 29% and 7%, and the MIC90 values were 1 μg/ml and 0.5-1 μg/ml, respectively. Regarding the agreement analysis, 2.2% of minor errors were observed in M. pachydermatis and 0.2-1% of very major errors occurred among C. parapsilosis. There were no significant differences in the yeast resistance rates between dogs with and without SD. KTZ and ITZ were still efficacious for M. pachydermatis but a high rate of KTZ resistant was reported in C. parapsilosis.
Collapse
|
13
|
Soares BV, Morais SM, dos Santos Fontenelle RO, Queiroz VA, Vila-Nova NS, Pereira CMC, Brito ES, Neto MAS, Brito EHS, Cavalcante CSP, Castelo-Branco DSCM, Rocha MFG. Antifungal activity, toxicity and chemical composition of the essential oil of Coriandrum sativum L. fruits. Molecules 2012; 17:8439-48. [PMID: 22785271 PMCID: PMC6268684 DOI: 10.3390/molecules17078439] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/22/2012] [Accepted: 06/30/2012] [Indexed: 11/29/2022] Open
Abstract
The aims of this study were to test the antifungal activity, toxicity and chemical composition of essential oil from C. sativum L. fruits. The essential oil, obtained by hydro-distillation, was analyzed by gas chromatography/mass spectroscopy. Linalool was the main constituent (58.22%). The oil was considered bioactive, showing an LC₅₀ value of 23 μg/mL in the Artemia salina lethality test. The antifungal activity was evaluated against Microsporum canis and Candida spp. by the agar-well diffusion method and the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were established by the broth microdilution method. The essential oil induced growth inhibition zones of 28 ± 5.42 and 9.25 ± 0.5 for M. canis and Candida spp. respectively. The MICs and MFCs for M. canis strains ranged from 78 to 620 and 150 to 1,250 μg/mL, and the MICs and MFCs for Candida spp strains ranged from 310 to 620 and 620 to 1,250 μg/mL, respectively. C. sativum essential oil is active in vitro against M. canis and Candida spp. demonstrating good antifungal activity.
Collapse
Affiliation(s)
- Bruna V. Soares
- Postgraduate Program in Veterinary Sciences, State University of Ceará, 60740-000, Fortaleza, CE, Brazil; E-Mails: (B.V.S.); (N.S.V.-N.)
| | - Selene M. Morais
- Postgraduate Program in Veterinary Sciences, State University of Ceará, 60740-000, Fortaleza, CE, Brazil; E-Mails: (B.V.S.); (N.S.V.-N.)
- Department of Chemistry, State University of Ceará, 60740-000, Fortaleza, CE, Brazil; E-Mails: (S.M.M.); (V.A.Q.); (C.M.C.P.)
| | | | - Vanessa A. Queiroz
- Department of Chemistry, State University of Ceará, 60740-000, Fortaleza, CE, Brazil; E-Mails: (S.M.M.); (V.A.Q.); (C.M.C.P.)
| | - Nadja S. Vila-Nova
- Postgraduate Program in Veterinary Sciences, State University of Ceará, 60740-000, Fortaleza, CE, Brazil; E-Mails: (B.V.S.); (N.S.V.-N.)
| | - Christiana M. C. Pereira
- Department of Chemistry, State University of Ceará, 60740-000, Fortaleza, CE, Brazil; E-Mails: (S.M.M.); (V.A.Q.); (C.M.C.P.)
| | - Edy S. Brito
- Embrapa Tropical Agroindustry Center, Fortaleza, 89700-000, Ceará, Brazil; E-Mails: (E.S.B.); (M.A.S.N.)
| | - Manoel A. S. Neto
- Embrapa Tropical Agroindustry Center, Fortaleza, 89700-000, Ceará, Brazil; E-Mails: (E.S.B.); (M.A.S.N.)
| | - Erika H. S. Brito
- Department of the Veterinary, Faculty of Veterinary Medicine, Superior Institute of Applied Theology, 62050-100, Sobral, CE, Brazil; E-Mails: (E.H.S.B.); (C.S.P.C.)
| | - Carolina S. P. Cavalcante
- Department of the Veterinary, Faculty of Veterinary Medicine, Superior Institute of Applied Theology, 62050-100, Sobral, CE, Brazil; E-Mails: (E.H.S.B.); (C.S.P.C.)
| | - Débora S. C. M. Castelo-Branco
- Postgraduate Program in Veterinary Sciences, State University of Ceará, 60740-000, Fortaleza, CE, Brazil; E-Mails: (B.V.S.); (N.S.V.-N.)
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, 60441-750, Ceará, Brazil; E-Mails: (D.S.C.M.C.-B.); (M.F.G.R.)
| | - Marcos F. G. Rocha
- Postgraduate Program in Veterinary Sciences, State University of Ceará, 60740-000, Fortaleza, CE, Brazil; E-Mails: (B.V.S.); (N.S.V.-N.)
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, 60441-750, Ceará, Brazil; E-Mails: (D.S.C.M.C.-B.); (M.F.G.R.)
| |
Collapse
|
14
|
Jesus F, Lautert C, Zanette R, Mahl D, Azevedo M, Machado M, Dutra V, Botton S, Alves S, Santurio J. In vitro susceptibility of fluconazole-susceptible and -resistant isolates of Malassezia pachydermatis against azoles. Vet Microbiol 2011; 152:161-4. [DOI: 10.1016/j.vetmic.2011.04.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
|
15
|
Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and O-Methyl Derivatives. Molecules 2011; 16:6422-31. [PMID: 25134762 PMCID: PMC6264291 DOI: 10.3390/molecules16086422] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/15/2011] [Accepted: 07/26/2011] [Indexed: 12/21/2022] Open
Abstract
In recent years there has been an increasing search for new antifungal compounds due to the side effects of conventional antifungal drugs and fungal resistance. The aims of this study were to test in vitro the activity of thymol, eugenol, estragole and anethole and some O-methyl-derivatives (methylthymol and methyleugenol) against Candida spp. and Microsporum canis. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC). The minimum fungicidal concentrations (MFC) for both Candida spp. and M. canis were found by subculturing each fungal suspension on potato dextrose agar. Thymol, methylthymol, eugenol, methyl-eugenol, anethole, estragole and griseofulvin respectively, presented the following MIC values against M. canis: 4.8–9.7; 78–150; 39; 78–150; 78–150; 19–39 µg/mL and 0.006–2.5 μg/mL. The MFC values for all compounds ranged from 9.7 to 31 µg/mL. Concerning Candida spp, thymol, methylthymol, eugenol, methyleugenol, anethole, estragole and amphotericin, respectively, showed the following MIC values: 39; 620–1250; 150–620; 310–620; 620; 620–1250 and 0.25–2.0 μg/mL. The MFC values varied from 78 to 2500 µg/mL. All tested compounds thus showed in vitro antifungal activity against Candida spp. and M. canis. Therefore, further studies should be carried out to confirm the usefulness of these alkylphenols in vivo.
Collapse
|
16
|
Lozina L, Peichoto M, Boehringer S, Koscinczuk P, Granero G, Acosta O. Efficacy of Argentine propolis formulation for topical treatment of canine otitis externa. ARQ BRAS MED VET ZOO 2010. [DOI: 10.1590/s0102-09352010000600010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The therapeutic effects of Argentine propolis ear drop formulation on canine otitis externa were evaluated. Forty-eight dogs with symptoms of otitis externa were randomly assigned to double-blinded, controlled clinical trial to evaluate the efficacy of topical formulation with propolis versus a topical placebo in the treatment of otitis externa. The propolis preparation and placebo were administrated into both external ear canals, twice daily for 14 days. Throughout the study, clinical examination and microbiological analysis of dogs ear exudates were made. The most frequent microorganisms isolated in culture media were: Malassezia pachydermatis (54.2%), Staphylococcus aureus (43.8%), coagulase-negative Staphylococcus (25.0%), Pseudomonas aeruginosa (20.8%), Candida albicans (18.8%), Proteus mirabilis (16.7%), Streptococcus spp. (16.7%), Enteroccocus faecalis (12.5%), Escherichia coli (12.5%), Staphylococcus intermedius (6.3%), Klebsiella spp. (4.2%), andCandida glabrata (2.1%). Whereas the control group did not recover from the infectious ear disease, the propolis preparation exhibited antimicrobial activity against most of the microorganisms isolated from samples of the treated group. In addition, no propolis-adverse effects were observed. This allowed propolis-treated patients to show a significant improvement of the clinical parameters. Thus, this new Argentine propolis ear drop formulation may be used for topical treatment of otitis externa in dogs.
Collapse
|
17
|
Abstract
Aspergillus ochraceus, a widely distributed filamentous fungus, was isolated and identified by cytology and culture as the cause of unilateral ceruminous purulent otitis in a 4-year-old male mixed-breed dog. The pathogenic role of the fungal isolate was confirmed by a good response to antifungal therapy and the absence of other pathogens. No underlying diseases were identified and the dog recovered after 3 weeks of therapy with oral itraconazole and topical miconazole.
Collapse
|
18
|
Costa AKF, Sidrim JJC, Cordeiro RA, Brilhante RSN, Monteiro AJ, Rocha MFG. Urban Pigeons (Columba livia) as a Potential Source of Pathogenic Yeasts: A Focus on Antifungal Susceptibility of Cryptococcus Strains in Northeast Brazil. Mycopathologia 2009; 169:207-13. [DOI: 10.1007/s11046-009-9245-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 09/29/2009] [Indexed: 11/30/2022]
|
19
|
Leite JJG, Brito EHS, Cordeiro RA, Brilhante RSN, Sidrim JJC, Bertini LM, Morais SMD, Rocha MFG. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Rev Soc Bras Med Trop 2009; 42:110-3. [PMID: 19448924 DOI: 10.1590/s0037-86822009000200003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/11/2009] [Indexed: 11/22/2022] Open
Abstract
The present study had the aim of testing the hexane and methanol extracts of avocado seeds, in order to determine their toxicity towards Artemia salina, evaluate their larvicidal activity towards Aedes aegypti and investigate their in vitro antifungal potential against strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis through the microdilution technique. In toxicity tests on Artemia salina, the hexane and methanol extracts from avocado seeds showed LC50 values of 2.37 and 24.13 mg mL-1 respectively. Against Aedes aegypti larvae, the LC50 results obtained were 16.7 mg mL-1 for hexane extract and 8.87 mg mL-1 for methanol extract from avocado seeds. The extracts tested were also active against all the yeast strains tested in vitro, with differing results such that the minimum inhibitory concentration of the hexane extract ranged from 0.625 to 1.25mg L-(1), from 0.312 to 0.625 mg mL-1 and from 0.031 to 0.625 mg mL-1, for the strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis, respectively. The minimal inhibitory concentration for the methanol extract ranged from 0.125 to 0.625 mg mL-1, from 0.08 to 0.156 mg mL-1 and from 0.312 to 0.625 mg mL-1, for the strains of Candida spp., Cryptococcus neoformans and Malassezia pachydermatis, respectively.
Collapse
|
20
|
Brito EHS, Brilhante RSN, Cordeiro RA, Sidrim JJC, Fontenelle ROS, Melo LM, Albuquerque ES, Rocha MFG. PCR-AGE, automated and manual methods to identify Candida strains from veterinary sources: a comparative approach. Vet Microbiol 2009; 139:318-22. [PMID: 19592181 DOI: 10.1016/j.vetmic.2009.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 05/26/2009] [Accepted: 06/12/2009] [Indexed: 11/17/2022]
Abstract
The increasing incidence of candidiasis has drawn the attention of scientists and clinicians attempting to improve methods of studying Candida yeasts. PCR amplification followed by agarose gel electrophoresis (PCR-AGE) and the manual method (morphological characteristics, biochemical profiles and culturing on CHROMagar-Candida) and VITEK 2 automated method were used to test a total of 30 fungal strains from dog sources. The strains were obtained from cases of dermatitis, otitis externa and from the ears, oral mucosa, vaginal mucosa, prepuce and perianal region of clinically normal dogs. After identification as Candida yeasts by the manual method, the strains were analyzed using both VITEK and PCR-AGE methods. Isolates of C. parapsilosis ATCC 22019, C. krusei ATCC 6258 and C. albicans ATCC 10231 were included as controls. The universal primers ITS1, ITS3 and ITS4 were used in two independent PCR reactions. Of 30 yeast isolates, 3 isolates (Saccharomyces cerevisiae, C. rugosa and C. parapsilosis) that were incompletely identified by the manual method were identified with the PCR-AGE and VITEK methods. The results revealed a 96.7% and 86.7% concurrent identification between the PCR-AGE and VITEK methods versus the manual method, respectively. PCR-AGE showed a greater level of concordance with the manual method, besides being faster and more sensitive than the other methods examined, and is therefore indicated for routine diagnostic testing of Candida spp. strains from veterinary sources.
Collapse
Affiliation(s)
- Erika H S Brito
- Faculty of Veterinary, Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza-CE, Ceará, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sousa JC, Berto RF, Gois EA, Fontenele-Cardi NC, Honório JER, Konno K, Richardson M, Rocha MFG, Camargo AACM, Pimenta DC, Cardi BA, Carvalho KM. Leptoglycin: a new Glycine/Leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae). Toxicon 2009; 54:23-32. [PMID: 19298834 DOI: 10.1016/j.toxicon.2009.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/26/2009] [Accepted: 03/03/2009] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides are components of innate immunity that is the first-line defense against invading pathogens for a wide range of organisms. Here, we describe the isolation, biological characterization and amino acid sequencing of a novel neutral Glycine/Leucine-rich antimicrobial peptide from skin secretion of Leptodactylus pentadactylus named leptoglycin. The amino acid sequence of the peptide purified by RP-HPLC (C(18) column) was deduced by mass spectrometric de novo sequencing and confirmed by Edman degradation: GLLGGLLGPLLGGGGGGGGGLL. Leptoglycin was able to inhibit the growth of Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli and Citrobacter freundii with minimal inhibitory concentrations (MICs) of 8 microM, 50 microM, and 75 microM respectively, but it did not show antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis), yeasts (Candida albicans and Candida tropicalis) and dermatophytes fungi (Microsporum canis and Trichophyton rubrum). No hemolytic activity was observed at the 2-200 microM range concentration. The amino acid sequence of leptoglycin with high level of glycine (59.1%) and leucine (36.4%) containing an unusual central proline suggests the existence of a new class of Gly/Leu-rich antimicrobial peptides. Taken together, these results suggest that this natural antimicrobial peptide could be a tool to develop new antibiotics.
Collapse
Affiliation(s)
- Juliana C Sousa
- Laboratório de Toxinologia e Farmacologia Molecular, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE 60.740-000, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The anatomical distribution and antimicrobial susceptibility of yeast species isolated from healthy dogs. Vet J 2008; 182:320-6. [PMID: 19109040 DOI: 10.1016/j.tvjl.2008.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 06/28/2008] [Accepted: 07/06/2008] [Indexed: 11/22/2022]
Abstract
The aim of this work was to identify the predominant yeast species present at different anatomical sites in healthy dogs and to determine their in vitro antimicrobial susceptibility using a broth microdilution assay. Samples were collected from the preputial, vaginal, oral and perianal mucosae and the isolates cultured were identified according to their morphological characteristics and biochemical profile. Malassezia pachydermatis was the most commonly isolated yeast, followed by Candida parapsilosis, Candida tropicalis, Candida albicans, Saccharomyces cerevisiae and Rhodotorula spp. Minimum inhibitory concentrations of the azole derivatives ketoconazole, itraconazole and fluconazole against Candida spp. were 0.03-16 microg/mL, 0.06 to >16 microg/mL and 0.5-64 microg/mL, respectively and Candida isolates were sensitive to caspofungin and amphotericin B. Although all isolates of M. pachydermatis were sensitive to itraconazole, fluconazole, ketoconazole and amphotericin B, they were found to be resistant to caspofungin. The study has highlighted that Candida spp., M. pachydermatis, S. cerevisiae and Rhodotorula spp. are part of the normal canine surface microbiota and some of these organisms exhibit in vitro resistance to commonly used antimicrobials.
Collapse
|
23
|
Subculture on potato dextrose agar as a complement to the broth microdilution assay for Malassezia pachydermatis. J Microbiol Methods 2008; 75:341-3. [PMID: 18603321 DOI: 10.1016/j.mimet.2008.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 05/15/2008] [Accepted: 05/23/2008] [Indexed: 11/22/2022]
Abstract
The main aim of this study was to verify the efficacy of subculture on potato dextrose agar (PDA) as a complement to the in vitro susceptibility test for Malassezia pachydermatis strains by a broth microdilution method, as well as to determine the MIC and MFC of azole derivatives, amphotericin B and caspofungin. The microdilution assay was performed in 96-well plates using a modified RPMI 1640 medium. The M. pachydermatis strains were resistant to caspofungin. All strains (n=50) had shown MIC values of <0.03, <0.03, 2.0, 4.0 and 4.0 microg/ml for itraconazole, ketoconazole, voriconazole, fluconazole and amphotericin B, respectively. Thus, the subculture on PDA improved the analysis of the in vitro antifungal susceptibility of M. pachydermatis.
Collapse
|
24
|
Prado MR, Brilhante RSN, Cordeiro RA, Monteiro AJ, Sidrim JJC, Rocha MFG. Frequency of yeasts and dermatophytes from healthy and diseased dogs. J Vet Diagn Invest 2008; 20:197-202. [PMID: 18319432 DOI: 10.1177/104063870802000208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to investigate the presence of dermatophytes and yeasts in healthy and diseased dogs. A total of 633 samples were collected from 26 healthy animals (104 samples), 131 with dermatitis (343 samples), 74 with otitis (148 samples), and 19 with ocular diseases (38 samples). Cultures from healthy animals were positive for Malassezia pachydermatis in 13.5% (7/52) of samples from skin, 42.3% (11/26) from ear, and 3.8% (1/26) from eye. Fungal growth was observed in 20.4% (70/343) samples from animals with dermatitis. Microsporum canis was the most isolated fungus (n = 39), followed by M. pachydermatis (n = 30) and Malassezia sp. (n = 3). Of the 148 samples from dogs with otitis, 90 (60.8%) were positive for M. pachydermatis, and of the clinical specimens from the conjunctiva of animals with ophthalmic disease, 2.6% (1/38) presented positive cultures for M. pachydermatis. Only 14.3% (2/14) of the positive cultures for M. pachydermatis and 40.9% (9/22) of those for M. canis were positive in the direct exam. Direct exams were positive in 84.3% (70/83) of the culture positive samples from affected ears of dogs with otitis. Malassezia pachydermatis may act as an aggravating factor in the occurrence of cutaneous diseases, or the isolation of M. canis may be associated with the onset of dermatophytosis. Fungal culture, rather than microscopic examination, should be used as the definitive diagnostic test for dermatomycoses and otitis.
Collapse
Affiliation(s)
- Marilena R Prado
- Faculty of Veterinary Medicine, State University of Ceará, Fortaleza/CE, Brazil, CEP 60.150-170.
| | | | | | | | | | | |
Collapse
|
25
|
Fontenelle R, Morais S, Brito E, Brilhante R, Cordeiro R, Nascimento N, Kerntopf M, Sidrim J, Rocha M. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J Appl Microbiol 2008; 104:1383-90. [DOI: 10.1111/j.1365-2672.2007.03707.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|