1
|
Yang Z, Zhang Y, Zhao Q, Du S, Huang X, Wu R, Yan Q, Han X, Wen Y, Cao SJ. HbpA from Glaesserella parasuis induces an inflammatory response in 3D4/21 cells by activating the MAPK and NF-κB signalling pathways and protects mice against G. parasuis when used as an immunogen. Vet Res 2024; 55:93. [PMID: 39075605 PMCID: PMC11285476 DOI: 10.1186/s13567-024-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Glaesserella parasuis is usually a benign swine commensal in the upper respiratory tract, but virulent strains can cause systemic infection characterized by pneumonia, meningitis, and fibrinous polyserositis. The intensive pulmonary inflammatory response following G. parasuis infection is the main cause of lung injury and death in pigs. Vaccination has failed to control the disease due to the lack of extended cross-protection. Accumulating evidence indicates that the heme-binding protein A (HbpA) is a potential virulence determinant and a promising antigen candidate for the development of a broader range of vaccines. However, it is not yet known whether HbpA contributes to G. parasuis virulence or has any potential immune protective effects against G. parasuis. Here, we show that HbpA can induce the transcription and secretion of proinflammatory cytokines (IL-6, TNF-α, and MCP-1) in porcine alveolar macrophages (PAM, 3D4/31). The HbpA protein is recognized by Toll-like receptors 2 and 4 on 3D4/21 macrophages, resulting in the activation of MAP kinase and NF-κB signalling cascades and the transcription and secretion of proinflammatory cytokines. HbpA contributes to virulence and bacterial pulmonary colonization in C57BL/6 mice and plays a role in adhesion to host cells and evasion of the bactericidal effect of pulmonary macrophages. In addition, mice immunized with HbpA were partially protected against challenge by G. parasuis SC1401. The results suggest that HbpA plays an important role in the pathogenesis of disease caused by G. parasuis and lay a foundation for the development of a subunit or chimeric anti-G. parasuis vaccine.
Collapse
Affiliation(s)
- Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - San-Jie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Yan X, Gu C, Xiao W, Zhou Y, Xiang X, Yu Z, He M, Yang Q, Zhao M, He L. Evaluation of immunoregulation and immunoprotective efficacy of Glaesserella parasuis histidine kinase QseC. Microb Pathog 2024; 192:106685. [PMID: 38750774 DOI: 10.1016/j.micpath.2024.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
QseC is a membrane sensor kinase that enables bacteria to perceive autoinducers -3, adrenaline, and norepinephrine to initiate downstream gene transcription. In this study, we found that the QseC protein of Glaesserella parasuis can serve as an effective antigen to activate the host's immune response. Therefore, we investigated the immunogenicity and host protective effect of this protein. ELISA and indirect immunofluorescence results showed that QseC protein can induce high titer levels of humoral immunity in mice and regularly generate specific serum antibodies. We used MTS reagents to detect lymphocyte proliferation levels and found that QseC protein can cause splenic lymphocyte proliferation with memory and specificity. Further immunological analysis of the spleen cell supernatant revealed significant upregulation of levels of IL-1β, IL-4 and IFN-γ in the QseC + adjuvant group. In the mouse challenge experiment, it was found that QseC + adjuvant can provide effective protection. The results of this study demonstrate that QseC protein provides effective protection in a mouse model and has the potential to serve as a candidate antigen for a novel subunit vaccine for further research.
Collapse
MESH Headings
- Animals
- Mice
- Interleukin-4/metabolism
- Interleukin-4/immunology
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Haemophilus Infections/immunology
- Haemophilus Infections/prevention & control
- Haemophilus Infections/microbiology
- Interferon-gamma/metabolism
- Histidine Kinase/genetics
- Histidine Kinase/metabolism
- Histidine Kinase/immunology
- Interleukin-1beta/metabolism
- Interleukin-1beta/genetics
- Immunity, Humoral
- Mice, Inbred BALB C
- Spleen/immunology
- Bacterial Proteins/immunology
- Bacterial Proteins/genetics
- Cell Proliferation
- Female
- Adjuvants, Immunologic
- Haemophilus parasuis/immunology
- Haemophilus parasuis/genetics
- Cytokines/metabolism
- Bacterial Vaccines/immunology
- Bacterial Vaccines/genetics
- Disease Models, Animal
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Lymphocytes/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
Collapse
Affiliation(s)
- Xuefeng Yan
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Wudian Xiao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Yuhong Zhou
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyi Xiang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Manli He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Mingde Zhao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Vassey M, Firdaus R, Aslam A, Wheldon LM, Oldfield NJ, Ala’Aldeen DAA, Wooldridge KG. G1 Cell Cycle Arrest Is Induced by the Fourth Extracellular Loop of Meningococcal PorA in Epithelial and Endothelial Cells. Cell Microbiol 2023. [DOI: 10.1155/2023/7480033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Neisseria meningitidis is the most frequent cause of bacterial meningitis and is one of the few bacterial pathogens that can breach the blood-brain barrier (BBB). The 37/67 kDa laminin receptor (LamR) was previously identified as a receptor mediating meningococcal binding to rodent and human brain microvascular endothelial cells, which form part of the BBB. The meningococcal surface proteins PorA and PilQ were identified as ligands for this receptor. Subsequently, the fourth extracellular loop of PorA (PorA-Loop4) was identified as the LamR-binding moiety. Here, we show that PorA-Loop4 targets the 37 kDa laminin receptor precursor (37LRP) on the cell surface by demonstrating that deletion of this loop abrogates the recruitment of 37LRP under meningococcal colonies. Using a circularized peptide corresponding to PorA-Loop4, as well as defined meningococcal mutants, we demonstrate that host cell interaction with PorA-Loop4 results in perturbation of p-CDK4 and Cyclin D1. These changes in cell cycle control proteins are coincident with cellular responses including inhibition of cell migration and a G1 cell cycle arrest. Modulation of the cell cycle of host cells is likely to contribute to the pathogenesis of meningococcal disease.
Collapse
|
4
|
Lee CY, Ong HX, Tan CY, Low SE, Phang LY, Lai J, Ooi PT, Fong MWC. Molecular Characterization and Phylogenetic Analysis of Outer membrane protein P2 ( OmpP2) of Glaesserella ( Haemophilus) parasuis Isolates in Central State of Peninsular Malaysia. Pathogens 2023; 12:pathogens12020308. [PMID: 36839580 PMCID: PMC9966854 DOI: 10.3390/pathogens12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Glaesserella (Haemophilus) parasuis, the etiological agent of Glässer's disease, is an economically significant pathogen commonly associated with serofibrinous polyserositis, arthritis, fibrinous bronchopneumonia and/or meningitis. This study is the first attempt to molecularly characterize and provide a detailed overview of the genetic variants of G. parasuis present in Malaysia, in reference to its serotype, virulence-associated trimeric autotransporters (vtaA) gene and outer membrane protein P2 (OmpP2) gene. The G. parasuis isolates (n = 11) from clinically sick field samples collected from two major pig producing states (Selangor and Perak) were selected for analysis. Upon multiplex PCR, the majority of the isolates (eight out of 11) were identified to be serotype 5 or 12, and interestingly, serotypes 3, 8 and 15 were also detected, which had never been reported in Malaysia prior to this. Generally, virulent vtaA was detected for all isolates, except for one, which displayed a nonvirulent vtaA. A phylogenetic analysis of the OmpP2 gene revealed that the majority of Malaysian isolates were clustered into genotype 1, which could be further divided into Ia and Ib, while only one isolate was clustered into genotype 2.
Collapse
Affiliation(s)
- Chee Yien Lee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Hui Xin Ong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Chew Yee Tan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Suet Ee Low
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Jyhmirn Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi City 60004, Taiwan
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| | - Michelle Wai Cheng Fong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| |
Collapse
|
5
|
Wu J, Nan W, Peng G, Hu H, Xu C, Huang J, Xiao Z. Screening of linear B-cell epitopes and its proinflammatory activities of Haemophilus parasuis outer membrane protein P2. Front Cell Infect Microbiol 2023; 13:1192651. [PMID: 37207184 PMCID: PMC10189045 DOI: 10.3389/fcimb.2023.1192651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Haemophilus parasuis is a commensal organism of the upper respiratory tract of pigs, but virulent strains can cause Glässer's disease, resulting in significant economic losses to the swine industry. OmpP2 is an outer membrane protein of this organism that shows considerable heterogeneity between virulent and non-virulent strains, with classification into genotypes I and II. It also acts as a dominant antigen and is involved in the inflammatory response. In this study, 32 monoclonal antibodies (mAbs) against recombinant OmpP2 (rOmpP2) of different genotypes were tested for reactivity to a panel of OmpP2 peptides. Nine linear B cell epitopes were screened, including five common genotype epitopes (Pt1a, Pt7/Pt7a, Pt9a, Pt17, and Pt19/Pt19a) and two groups of genotype-specific epitopes (Pt5 and Pt5-II, Pt11/Pt11a, and Pt11a-II). In addition, we used positive sera from mice and pigs to screen for five linear B-cell epitopes (Pt4, Pt14, Pt15, Pt21, and Pt22). After porcine alveolar macrophages (PAMs) were stimulated with overlapping OmpP2 peptides, we found that the epitope peptides Pt1 and Pt9, and the loop peptide Pt20 which was adjacent epitopes could all significantly upregulated the mRNA expression levels of IL-1α, IL-1β, IL-6, IL-8, and TNF-α. Additionally, we identified epitope peptides Pt7, Pt11/Pt11a, Pt17, Pt19, and Pt21 and loop peptides Pt13 and Pt18 which adjacent epitopes could also upregulate the mRNA expression levels of most proinflammatory cytokines. This suggested that these peptides may be the virulence-related sites of the OmpP2 protein, with proinflammatory activity. Further study revealed differences in the mRNA expression levels of proinflammatory cytokines, including IL-1β and IL-6, between genotype-specific epitopes, which may be responsible for pathogenic differences between different genotype strains. Here, we profiled a linear B-cell epitope map of the OmpP2 protein and preliminarily analyzed the proinflammatory activities and effects of these epitopes on bacterial virulence, providing a reliable theoretical basis for establishing a method to distinguish strain pathogenicity and to screen candidate peptides for subunit vaccines.
Collapse
Affiliation(s)
- Jingbo Wu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Wenjin Nan
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
- *Correspondence: Wenjin Nan,
| | - Guoliang Peng
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Honghui Hu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Chongbo Xu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Jianqiang Huang
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Zhengzhong Xiao
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| |
Collapse
|
6
|
Transcriptomics analysis reveals key lncRNAs and genes related to the infection of porcine lung macrophages by Glaesserella parasuis. Microb Pathog 2022; 169:105617. [DOI: 10.1016/j.micpath.2022.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
|
7
|
Luo X, Chang X, Zhou H, Lin H, Fan H. Glaesserella parasuis induces inflammatory response in 3D4/21 cells through activation of NLRP3 inflammasome signaling pathway via ROS. Vet Microbiol 2021; 256:109057. [PMID: 33799227 DOI: 10.1016/j.vetmic.2021.109057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/21/2021] [Indexed: 02/08/2023]
Abstract
Glaesserella parasuis (G. parasuis) is an important pathogenic bacterium that can cause Glässer's disease, and it has resulted in tremendous economic losses to the global swine industry. The intensive pulmonary inflammatory response caused by G. parasuis infection is the main cause of lung injury and death in pigs. However, the exact mechanism by which it causes severe pulmonary inflammation is not fully understood yet. In this study, severe pneumonia was observed in piglets infected with G. parasuis; and an infection cell model was established using porcine alveolar macrophages cell line 3D4/21, which was determined to be susceptible to G. parasuis infection in vitro. G. parasuis infection of 3D4/21 cells induced upregulation of proinflammatory cytokines TNF-α, IL-1β, IL-18 and production of intracellular reactive oxygen species (ROS). The expression of IL-1β related to activation of the NLRP3 inflammasome signaling pathway, which had not been shown before in G. parasuis infection. Furthermore, it was first found that release of intracellular ROS, which was mediated by NADPH oxidase in 3D4/21 cells, was found crucial for the activation of the NLRP3 signaling pathway and promoted the expression of proinflammatory cytokines, such as TNF-α and IL-1. In general, this study explored the specific mechanism of severe pulmonary inflammation caused by G. parasuis infection, and provides a foundation for further elucidating the pathogenic mechanism of G. parasuis.
Collapse
Affiliation(s)
- Xinran Luo
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaojing Chang
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hong Zhou
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huixing Lin
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hongjie Fan
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
He C, Yang P, Wang L, Jiang X, Zhang W, Liang X, Yin L, Yin Z, Geng Y, Zhong Z, Song X, Zou Y, Li L, Lv C. Antibacterial effect of Blumea balsamifera DC. essential oil against Haemophilus parasuis. Arch Microbiol 2020; 202:2499-2508. [PMID: 32638056 DOI: 10.1007/s00203-020-01946-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/22/2020] [Accepted: 06/06/2020] [Indexed: 11/30/2022]
Abstract
Haemophilus parasuis (H. parasuis), the cause of the Glasser's disease, is a potentially pathogenic gram-negative organism that colonizes the upper respiratory tract of pigs. The extraction of Blumea balsamifera DC., as a traditional Chinese herb, has shown great bacteriostatic effect against several common bacteria. To study the antibacterial effect on H. parasuis in vitro, this study evaluated the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Blumea balsamifera DC. essential oil (BBO) as well as morphological changes in H. parasuis treated with it. Furthermore, changes in expression of total protein and key virulence factors were also assessed. Results showed that the MIC and MBC were 0.625 and 1.25 μg/mL, respectively. As the concentration of BBO increased, the growth curve inhibition became stronger. H. parasuis cells were damaged severely after treatment with BBO for 4 h, demonstrating plasmolysis and enlarged vacuoles, along with broken cell walls and membranes. Total protein and virulence factor expression in H. parasuis was significantly downregulated by BBO. Taken together, these results indicated a substantial antibacterial effect of BBO on H. parasuis.
Collapse
Affiliation(s)
- Changliang He
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China. .,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | - Peiyi Yang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lu Wang
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xiaolin Jiang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xiaoxia Liang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lizi Yin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Zhongqiong Yin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhijun Zhong
- Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xu Song
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yuanfeng Zou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lixia Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Cheng Lv
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Zhou Y, Feng S, He X, Zhou Q, Wang Y, Yue H, Tang C, Zhang B. Surface-exposed loops L7 and L8 of Haemophilus (Glaesserella) parasuis OmpP2 contribute to the expression of proinflammatory cytokines in porcine alveolar macrophages. Vet Res 2019; 50:105. [PMID: 31783919 PMCID: PMC6884870 DOI: 10.1186/s13567-019-0721-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Outer membrane protein P2 (OmpP2) of the virulent Haemophilus (Glaesserella) parasuis has been shown to induce the release of proinflammatory cytokines. The OmpP2 protein is composed of eight or nine surface-exposed loops, but it is unclear which of them participates in the OmpP2-induced inflammatory response. In this study, we synthesized linear peptides corresponding to surface-exposed loops L1–L8 of OmpP2 from the virulent H. parasuis SC096 strain to stimulate porcine alveolar macrophages (PAMs) in vitro. We found that both L7 and L8 significantly upregulated the mRNA expression of interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-17, and IL-23 and the chemokines CCL-4 and CCL-5 in a time- and dose-dependent manner. Additionally, we constructed ompP2ΔLoop7 and ompP2ΔLoop8 mutant SC096 strains and extracted their native OmpP2 proteins to stimulate PAMs. These mutant proteins induced significantly less mRNA expression of inflammatory cytokines than SC096 OmpP2. Next, the amino acid sequences of L7 and L8 from 15 serovars of H. parasuis OmpP2 were aligned. These sequences were relatively conserved among the most virulent reference strains, suggesting that L7 and L8 are the most active peptides of the OmpP2 protein. Furthermore, L7 and L8 significantly upregulated the NF-κB and AP-1 activity levels based on luciferase reporter assays in a dose-dependent manner. Therefore, our results demonstrated that both surface-exposed loops L7 and L8 of H. parasuis OmpP2 induced the expression of proinflammatory cytokines possibly by activating the NF-κB and MAPK signalling pathways in cells infected by H. parasuis.
Collapse
Affiliation(s)
- Ye Zhou
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyi He
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Qun Zhou
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Yuanwei Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Hua Yue
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.,Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.,Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Bin Zhang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China. .,Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China.
| |
Collapse
|
10
|
Zhang Q, Huang Q, Fang Q, Li H, Tang H, Zou G, Wang D, Li S, Bei W, Chen H, Li L, Zhou R. Identification of genes regulated by the two-component system response regulator NarP of Actinobacillus pleuropneumoniae via DNA-affinity-purified sequencing. Microbiol Res 2019; 230:126343. [PMID: 31539852 DOI: 10.1016/j.micres.2019.126343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
Abstract
Identifying the direct target genes of response regulators (RRs) of a bacterial two-component system (TCS) is critical to understand the roles of TCS in bacterial environmental adaption and pathogenesis. Actinobacillus pleuropneumoniae is an important respiratory bacterial pathogen that causes considerable economic losses to swine industry worldwide. The targets of A. pleuropneumoniae NarP (nitrate/nitrite RR), which is the cognate RR of the nitrate/nitrite sensor histidine kinase NarQ, are still unknown. In the present study, a DNA-affinity-purified sequencing (DAP-Seq) approach was established. The upstream regions of a total of 131 candidate genes from the genome of A. pleuropneumoniae were co-purified with the activated NarP protein. Electrophoretic mobility shift assay (EMSA) results confirmed the interactions of NarP with the promoter regions of five selected target genes, including dmsA, pgaA, ftpA, cstA and ushA. The EMSA-confirmed target genes were significantly up-regulated in the narP-deleted mutant in the presence of additional nitrate, whilst the transcriptional changes were restored in the complemented strain. The NarP binding motif in the upstream regions of the target genes dmsA and ftpA were further identified and confirmed by EMSA using the truncated binding motif. The NarP binding sites were present in a total of 25.2% of the DNA fragments captured by DAP-Seq. These results demonstrated that the established DAP-Seq method is effective for exploring the direct targets of RRs of bacterial TCSs and that the A. pleuropneumoniae NarP could be a repressor in response to nitrate.
Collapse
Affiliation(s)
- Qiuhong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Hao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Dong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Siqi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, Hubei, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, Hubei, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, Hubei, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, 430070, China.
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, Hubei, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, 430070, China.
| |
Collapse
|
11
|
Zeng Z, Chen X, Yue H, He H, Ren Y, Tang C, Zhang B. The effect of rfaD and rfaF of Haemophilus parasuis on lipooligosaccharide induced inflammation by NF-κB/MAPKs signaling in porcine alveolar macrophages. J Vet Med Sci 2018; 80:842-845. [PMID: 29628479 PMCID: PMC5989033 DOI: 10.1292/jvms.16-0586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Haemophilus parasuis, the rfa cluster has been identified as a virulence-associated factor that is involved in lipooligosaccharide (LOS) biosynthesis.
In this study, we assessed the roles of rfaD and rfaF genes in H. parasuis SC096 on LOS-induced pro-inflammatory factors and the related
signaling pathways in porcine alveolar macrophages (PAMs) by real-time PCR and western blotting. The results showed that the LOSs of both rfaD and rfaF
mutants (ΔrfaD-LOS and ΔrfaF-LOS) significantly decreased the mRNA expression of pro-inflammatory factors (IL-1α, IL-1β, IL-6, IL-8 and TNF-α) in PAMs
compared with H. parasuis SC096 LOS (WT-LOS). Furthermore, in ΔrfaD-LOS- and ΔrfaF-LOS-treated cells, IκBα degradation was significantly
inhibited and levels of phospho-p65 and phospho-p38 were significantly reduced in PAMs. These findings suggested that the rfaD and rfaF genes mediated LOS
induction of pro-inflammatory cytokines in PAMs by regulating the NF-κB and MAPKs signaling pathways during H. parasuis infection.
Collapse
Affiliation(s)
- Ze Zeng
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Xinnuo Chen
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Huan He
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Yupeng Ren
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Bin Zhang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| |
Collapse
|
12
|
Wu X, Xiao L, Wang Y, Yao X, Yang Z. Genetic variants and phylogenetic analysis of Haemophilus parasuis (HPS) OMPP2 detected in Sichuan, China from 2013 to 2015. J Vet Med Sci 2017; 79:1648-1651. [PMID: 28824043 PMCID: PMC5658552 DOI: 10.1292/jvms.16-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the genetic variation in Haemophilus parasuis (HPS) in
Sichuan, China, 11 isolates were analyzed based on the outer membrane protein P2
(OMPP2) sequence. Sequence analysis showed that the 11 isolates shared
93.0 to 100% nucleotide homology with 15 reference strains, and the consistency between
the 26 strains was 89.0%. The isolates of HPS-1, 2, 4, 5, 6, 7, 8, 10 and 11 had a 69-base
deletion from 770 base pairs (bp) to 850 bp, which was infrequent in China. The
phylogenetic tree showed that HPS-3 and HPS-8 had closer relationships with European and
Japanese strains, but shared 98.7% nucleotide homology with the SW114 Japanese strain.
Collapse
Affiliation(s)
- Xulong Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Xiao
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
13
|
Li L, Tian Y, Yu J, Song X, Jia R, Cui Q, Tong W, Zou Y, Li L, Yin L, Liang X, He C, Yue G, Ye G, Zhao L, Shi F, Lv C, Cao S, Yin Z. iTRAQ-based quantitative proteomic analysis reveals multiple effects of Emodin to Haemophilus parasuis. J Proteomics 2017; 166:39-47. [DOI: 10.1016/j.jprot.2017.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
|
14
|
Zeng Z, Zhang B, He H, Chen X, Ren Y, Yue H, Tang C. lgtF effects of Haemophilus parasuis LOS induced inflammation through regulation of NF-κB and MAPKs signaling pathways. Microb Pathog 2017; 110:380-384. [PMID: 28716662 DOI: 10.1016/j.micpath.2017.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022]
Abstract
The lgtF gene encodes a glucosyltransferase responsible for adding a glucose to the first sugar of heptose I in the synthesis of lipooligosaccharides (LOS). To study the function of lgtF, we constructed an lgtF mutant (ΔlgtF) from Haemophilus parasuis SC096 using a natural transformation system. A highly purified preparation of LOS from ΔlgtF (ΔlgtF-LOS) exhibited an obvious truncation in structure compared to the LOS of the wild-type SC096 strain (WT-LOS). The ΔlgtF-LOS also displayed a significantly reduced ability to induce inflammatory cytokine mRNA expression of tumor necrosis factor alpha (TNF-α), interleukin-1α (IL-1α), IL-1β, IL-6 and IL-8 in porcine alveolar macrophages (PAMs) in comparison with the WT-LOS. Furthermore, we also found that ΔlgtF-LOS-treated cells had significantly decreased phospho-p65 and phospho-p38, and inhibited IκBα degradation. These findings suggested that the lgtF gene mediated LOS induction of pro-inflammatory cytokines in PAMs by regulating the NF-κB and MAPKs signaling pathways during H. parasuis infection.
Collapse
Affiliation(s)
- Ze Zeng
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Bin Zhang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China.
| | - Huan He
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Xinnuo Chen
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Yupeng Ren
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China.
| |
Collapse
|
15
|
Fu S, Xu L, Li S, Qiu Y, Liu Y, Wu Z, Ye C, Hou Y, Hu CAA. Baicalin suppresses NLRP3 inflammasome and nuclear factor-kappa B (NF-κB) signaling during Haemophilus parasuis infection. Vet Res 2016; 47:80. [PMID: 27502767 PMCID: PMC4977663 DOI: 10.1186/s13567-016-0359-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/18/2016] [Indexed: 01/04/2023] Open
Abstract
Haemophilus parasuis (H. parasuis) is the causative agent of Glässer’s disease, a severe membrane inflammation disorder. Previously we showed that Baicalin (BA) possesses anti-inflammatory effects via the NLRP3 inflammatory pathway in an LPS-challenged piglet model. However, whether BA has anti-inflammatory effects upon H. parasuis infection is still unclear. This study investigated the anti-inflammatory effects and mechanisms of BA on H. parasuis-induced inflammatory responses via the NF-κB and NLRP3 inflammasome pathway in piglet mononuclear phagocytes (PMNP). Our data demonstrate that PMNP, when infected with H. parasuis, induced ROS (reactive oxygen species) production, promoted apoptosis, and initiated transcription expression of IL-6, IL-8, IL-10, PGE2, COX-2 and TNF-α via the NF-κB signaling pathway, and IL-1β and IL-18 via the NLRP3 inflammasome signaling pathway. Moreover, when BA was administrated, we observed a reduction in ROS production, suppression of apoptosis, and inhibition of the activation of NF-κB and NLRP3 inflammasome signaling pathway in PMNP treated with H. parasuis. To our best knowledge, this is the first example that uses piglet primary immune cells for an H. parasuis infection study. Our data strongly suggest that BA can reverse the inflammatory effect initiated by H. parasuis and possesses significant immunosuppression activity, which represents a promising therapeutic agent in the treatment of H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Lei Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Sali Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chien-An Andy Hu
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|
16
|
Lack of strong anti-viral immune gene stimulation in Torque Teno Sus Virus1 infected macrophage cells. Virology 2016; 495:63-70. [PMID: 27179346 DOI: 10.1016/j.virol.2016.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/06/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022]
Abstract
While recent findings suggest that swine TTVs (TTSuVs) can act as primary or co-infecting pathogens, very little is known about viral immunity. To determine whether TTSuVs downregulate key host immune responses to facilitate their own survival, a swine macrophage cell line, 3D4/31, was used to over-express recombinant TTSuV1 viral particles or the ORF3 protein. Immune gene expression profiles were assessed by a quantitative PCR panel consisting of 22 immune genes, in cell samples collected at 6, 12, 24 and 48h post-transfection. Despite the upregulation of IFN-β and TLR9, interferon stimulated innate genes and pro-inflammatory genes were not upregulated in virally infected cells. The adaptive immune genes, IL-4 and IL-13, were significantly downregulated at 6h post-transfection. The ORF3 protein did not appear do not have a major immuno-suppressive effect, nor did it stimulate anti-viral immunity. Data from this study warrants further investigation into the mechanisms of TTV related immuno-pathogenesis.
Collapse
|
17
|
Moleres J, Santos-López A, Lázaro I, Labairu J, Prat C, Ardanuy C, González-Zorn B, Aragon V, Garmendia J. Novel blaROB-1-bearing plasmid conferring resistance to β-lactams in Haemophilus parasuis isolates from healthy weaning pigs. Appl Environ Microbiol 2015; 81:3255-67. [PMID: 25747001 PMCID: PMC4393459 DOI: 10.1128/aem.03865-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/25/2015] [Indexed: 11/20/2022] Open
Abstract
Haemophilus parasuis, the causative agent of Glässer's disease, is one of the early colonizers of the nasal mucosa of piglets. It is prevalent in swine herds, and lesions associated with disease are fibrinous polyserositis and bronchopneumonia. Antibiotics are commonly used in disease control, and resistance to several antibiotics has been described in H. parasuis. Prediction of H. parasuis virulence is currently limited by our scarce understanding of its pathogenicity. Some genes have been associated with H. parasuis virulence, such as lsgB and group 1 vtaA, while biofilm growth has been associated with nonvirulent strains. In this study, 86 H. parasuis nasal isolates from farms that had not had a case of disease for more than 10 years were obtained by sampling piglets at weaning. Isolates were studied by enterobacterial repetitive intergenic consensus PCR and determination of the presence of lsgB and group 1 vtaA, biofilm formation, inflammatory cell response, and resistance to antibiotics. As part of the diversity encountered, a novel 2,661-bp plasmid, named pJMA-1, bearing the blaROB-1 β-lactamase was detected in eight colonizing strains. pJMA-1 was shown to share a backbone with other small plasmids described in the Pasteurellaceae, to be 100% stable, and to have a lower biological cost than the previously described plasmid pB1000. pJMA-1 was also found in nine H. parasuis nasal strains from a separate collection, but it was not detected in isolates from the lesions of animals with Glässer's disease or in nontypeable Haemophilus influenzae isolates. Altogether, we show that commensal H. parasuis isolates represent a reservoir of β-lactam resistance genes which can be transferred to pathogens or other bacteria.
Collapse
Affiliation(s)
- Javier Moleres
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno de Navarra, Mutilva, Spain
| | - Alfonso Santos-López
- Departamento de Sanidad Animal, Facultad de Veterinaria y VISAVET, Universidad Complutense, Madrid, Spain
| | - Isidro Lázaro
- Instituto Navarro de Tecnologías e Infraestructuras Agroalimentarias-INTIA, Navarra, Spain
| | - Javier Labairu
- Instituto Navarro de Tecnologías e Infraestructuras Agroalimentarias-INTIA, Navarra, Spain
| | - Cristina Prat
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Ardanuy
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain Hospital Universitari Bellvitge, Barcelona, Spain
| | - Bruno González-Zorn
- Departamento de Sanidad Animal, Facultad de Veterinaria y VISAVET, Universidad Complutense, Madrid, Spain
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno de Navarra, Mutilva, Spain Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|