1
|
Zhao X, Ruan J, Li J, Dai C, Pei M, Zhou Y. Three-dimensional texture analyses of multi-quantitative relaxation time maps for evaluating cartilage repair with the treatment of allogeneic human adipose-derived mesenchymal progenitor cells. Magn Reson Imaging 2024; 110:7-16. [PMID: 38547934 DOI: 10.1016/j.mri.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND To explore the ability of three-dimensional texture analyses based on gray-level run-length matrix (GLRLM) for examining the spatial distribution of pixel values on magnetic resonance imaging (MRI) relaxation time maps and detecting the compositional variation of cartilage repair following treatment with allogeneic human adipose-derived mesenchymal progenitor cells (haMPCs). METHODS Participants with knee osteoarthritis were randomly divided into three groups with intra-articular haMPCs injections: low-, medium-, and high-dose groups. We analyzed five GLRLM parameters in the T1rho, T2 and T2star maps, including run length non-uniformity (RLNonUni), gray-level non-uniformity (GLevNonU), long run emphasis (LngREmph), short run emphasis (ShrtREmp), and fraction of images in runs. We used the relative D values (the ratio of difference values to baseline) as the objective to avoid errors caused by individual differences. We calculated the two-tailed Pearson's linear correlation coefficient (r) to investigate the correlations of the texture parameters with the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores. RESULTS Compared with the base time, significant reduction of WOMAC score was observed in both high and medium doses groups at terminal time, indicating relief of pain symptoms in high and medium groups with the treatment of allogeneic haMPCs. Significant differences were observed in the GLRLM parameters of cartilage MR relaxation time maps in different doses groups. In both T1rho and T2 relaxation time maps, the high-dose group showed significant increases in relative D values of RLNonUni, GLevNonU, LngREmph and ShrtREmp, which indicated significant changes in the uniformity of relaxation time maps. For T2star map, GLRLM parameters such as GLevNonU and ShrtREmp, especially LngREmph, showed significant increases in relative D values in high-dose group. Among all GLRLM features, LngREmph of three relaxation time maps had performed excellent linear correlations with WOMAC scores. CONCLUSIONS Texture analysis of the cartilage may allow the detection of compositional variation in cartilage repair with the treatment of allogeneic haMPCs. This technique displays potential applications in understanding the mechanism of stem cell repair of the cartilage and assessing the treatment response.
Collapse
Affiliation(s)
- Xinxin Zhao
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai 200127, China.
| | - Jingjing Ruan
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai 200127, China
| | - Jia Li
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai 200127, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Inc., No. 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Mengchao Pei
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, No.320, Yueyang Road, Shanghai 200031, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai 200127, China.
| |
Collapse
|
2
|
Nelson BB, Mäkelä JTA, Lawson TB, Patwa AN, Snyder BD, McIlwraith CW, Grinstaff MW, Goodrich LR, Kawcak CE. Cationic contrast-enhanced computed tomography distinguishes between reparative, degenerative, and healthy equine articular cartilage. J Orthop Res 2021; 39:1647-1657. [PMID: 33104251 DOI: 10.1002/jor.24894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
Cationic contrast-enhanced computed tomography (CECT) is a quantitative imaging technique that characterizes articular cartilage, though its efficacy in differentiating repair tissue from other disease states is undetermined. We hypothesized that cationic CECT attenuation will distinguish between reparative, degenerative, and healthy equine articular cartilage and will reflect biochemical, mechanical, and histologic properties. Chondral defects were created in vivo on equine femoropatellar joint surfaces. Within defects, calcified cartilage was retained (Repair 1) or removed (Repair 2). At sacrifice, plugs were collected from within defects, and at locations bordering (adjacent site) and remote to defects along with site-matched controls. Articular cartilage was analyzed via CECT using CA4+ to assess glycosaminoglycan (GAG) content, compressive modulus (E eq ), and International Cartilage Repair Society (ICRS) II histologic score. Comparisons of variables were made between sites using mixed model analysis and between variables with correlations. Cationic CECT attenuation was significantly lower in Repair 1 (1478 ± 333 Hounsfield units [HUs]), Repair 2 (1229 ± 191 HUs), and adjacent (2139 ± 336 HUs) sites when compared with site-matched controls (2587 ± 298, 2505 ± 184, and 2563 ± 538 HUs, respectively; all p < .0001). Cationic CECT attenuation was significantly higher at remote sites (2928 ± 420 HUs) compared with Repair 1, Repair 2, and adjacent sites (all p < .0001). Cationic CECT attenuation correlated with ICRS II score (r = .79), GAG (r = .76), and E eq (r = .71; all p < .0001). Cationic CECT distinguishes between reparative, degenerative, and healthy articular cartilage and highly correlates with biochemical, mechanical, and histological tissue properties.
Collapse
Affiliation(s)
- Brad B Nelson
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Janne T A Mäkelä
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Departments of Chemistry, Boston University, Boston, Massachusetts, USA.,Department Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Taylor B Lawson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Departments of Chemistry, Boston University, Boston, Massachusetts, USA.,Department Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Amit N Patwa
- Departments of Chemistry, Boston University, Boston, Massachusetts, USA.,Department Biomedical Engineering, Boston University, Boston, Massachusetts, USA.,Deparment of Chemistry, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Mark W Grinstaff
- Departments of Chemistry, Boston University, Boston, Massachusetts, USA.,Department Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Laurie R Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Chris E Kawcak
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Franklin SP, Stoker AM, Lin ASP, Pownder SL, Burke EE, Bozynski CC, Kuroki K, Guldberg RE, Cook JL, Holmes SP. T1ρ, T2 mapping, and EPIC-µCT Imaging in a Canine Model of Knee Osteochondral Injury. J Orthop Res 2020; 38:368-377. [PMID: 31429976 DOI: 10.1002/jor.24450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
The dog is the most commonly used large animal model for the study of osteoarthritis. Optimizing methods for assessing cartilage health would prove useful in reducing the number of dogs needed for a valid study of osteoarthritis and cartilage repair. Twelve beagles had critical-sized osteochondral defects created in the medial femoral condyle of both knees. Eight dogs had T1ρ and T2 magnetic resonance imaging (MRI) performed approximately 6 months after defect creation. Following MRI evaluations, all 12 dogs were humanely euthanatized and cartilage samples were obtained from the medial and lateral femoral condyles, medial and lateral tibial plateaus, trochlear groove, and patella for proteoglycan and collagen quantification. Equilibrium partitioning of an ionic contrast (EPIC)-µCT was then performed followed by the histologic assessment of the knees. Correlations between T1ρ, T2, EPIC-µCT and proteoglycan, collagen, and histology scores were assessed using a multivariate analysis accounting for correlations from samples within the same knee and in the same dog. Pearson's correlation coefficients were calculated to assess the strength of significant relationships. Correlations between µCT values and biochemical or histologic assessment were weak to moderately strong (0.09-0.41; p < 0.0001-0.66). There was a weak correlation between the T2 values and cartilage proteoglycan (-0.32; p = 0.04). The correlation between T1ρ values and cartilage proteoglycan were moderately strong (-0.38; p < 0.05) while the strongest correlation was between the T1ρ values and histological assessment of cartilage with a correlation coefficient of 0.58 (p < 0.0001). These data suggest that T1ρ shows promise for possible utility in the translational study of cartilage health and warrants further development in this species. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:368-377, 2020.
Collapse
Affiliation(s)
- Samuel P Franklin
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
| | - Angela S P Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon
| | - Sarah L Pownder
- MRI Laboratory, Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Emily E Burke
- Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Chantelle C Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
| | - Kei Kuroki
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
| | - Shannon P Holmes
- Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
4
|
Nelson BB, Kawcak CE, Barrett MF, McIlwraith CW, Grinstaff MW, Goodrich LR. Recent advances in articular cartilage evaluation using computed tomography and magnetic resonance imaging. Equine Vet J 2018; 50:564-579. [DOI: 10.1111/evj.12808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- B. B. Nelson
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - C. E. Kawcak
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - M. F. Barrett
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
- Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins Colorado USA
| | - C. W. McIlwraith
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - M. W. Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine Boston University Boston Massachusetts USA
| | - L. R. Goodrich
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| |
Collapse
|
5
|
Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures. Stem Cells Int 2018. [PMID: 29535784 PMCID: PMC5832141 DOI: 10.1155/2018/9079538] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.
Collapse
|
6
|
Nelson BB, Goodrich LR, Barrett MF, Grinstaff MW, Kawcak CE. Use of contrast media in computed tomography and magnetic resonance imaging in horses: Techniques, adverse events and opportunities. Equine Vet J 2017; 49:410-424. [DOI: 10.1111/evj.12689] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 04/04/2017] [Indexed: 12/20/2022]
Affiliation(s)
- B. B. Nelson
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences, Colorado State University; Fort Collins Colorado USA
| | - L. R. Goodrich
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences, Colorado State University; Fort Collins Colorado USA
| | - M. F. Barrett
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences, Colorado State University; Fort Collins Colorado USA
- Department of Environmental and Radiological Health Sciences; Colorado State University; Fort Collins Colorado USA
| | - M. W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, Materials Science & Engineering and Medicine; Boston University; Boston Massachusetts USA
| | - C. E. Kawcak
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences, Colorado State University; Fort Collins Colorado USA
| |
Collapse
|
7
|
Martel G, Couture CA, Gilbert G, Bancelin S, Richard H, Moser T, Kiss S, Légaré F, Laverty S. Femoral epiphyseal cartilage matrix changes at predilection sites of equine osteochondrosis: Quantitative MRI, second-harmonic microscopy, and histological findings. J Orthop Res 2016; 34:1743-1752. [PMID: 27734566 DOI: 10.1002/jor.23176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/21/2016] [Indexed: 02/04/2023]
Abstract
Osteochondrosis is an ischemic chondronecrosis of epiphyseal growth cartilage that results in focal failure of endochondral ossification and osteochondritis dissecans at specific sites in the epiphyses of humans and animals, including horses. The upstream events leading to the focal ischemia remain unknown. The epiphyseal growth cartilage matrix is composed of proteoglycan and collagen macromolecules and encases its vascular tree in canals. The matrix undergoes major dynamic changes in early life that could weaken it biomechanically and predispose it to focal trauma and vascular failure. Subregions in neonatal foal femoral epiphyses (n = 10 osteochondrosis predisposed; n = 6 control) were assessed for proteoglycan and collagen structure/content employing 3T quantitative MRI (3T qMRI: T1ρ and T2 maps). Site-matched validations were made with histology, immunohistochemistry, and second-harmonic microscopy. Growth cartilage T1ρ and T2 relaxation times were significantly increased (p < 0.002) within the proximal third of the trochlea, a site predisposed to osteochondrosis, when compared with other regions. However, this was observed in both control and osteochondrosis predisposed specimens. Microscopic evaluation of this region revealed an expansive area with low proteoglycan content and a hypertrophic-like appearance on second-harmonic microscopy. We speculate that this matrix structure and composition, though physiological, may weaken the epiphyseal growth cartilage biomechanically in focal regions and could enhance the risk of vascular failure with trauma leading to osteochondrosis. However, additional investigations are now required to confirm this. 3T qMRI will be useful for future non-invasive longitudinal studies to track the osteochondrosis disease trajectory in animals and humans. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1743-1752, 2016.
Collapse
Affiliation(s)
- Gabrielle Martel
- Comparative Orthopaedic Research Laboratory, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | | | | | | | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | - Thomas Moser
- Department of Radiology, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada
| | - Sabrina Kiss
- Department of Radiology, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada
| | | | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada.
| |
Collapse
|
8
|
Sakai N, Hashimoto C, Yarimitsu S, Sawae Y, Komori M, Murakami T. A functional effect of the superficial mechanical properties of articular cartilage as a load bearing system in a sliding condition. BIOSURFACE AND BIOTRIBOLOGY 2016. [DOI: 10.1016/j.bsbt.2016.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Vandeweerd JM, Zhao Y, Nisolle JF, Zhang W, Zhihong L, Clegg P, Gustin P. Effect of corticosteroids on articular cartilage: have animal studies said everything? Fundam Clin Pharmacol 2015. [DOI: 10.1111/fcp.12137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jean-Michel Vandeweerd
- Integrated Veterinary Research Unit (IVRU); Namur Research Institute for Life Sciences (NARILIS); University of Namur; Rue de Bruxelles 61 5000 Namur Belgium
| | - Yang Zhao
- Integrated Veterinary Research Unit (IVRU); Namur Research Institute for Life Sciences (NARILIS); University of Namur; Rue de Bruxelles 61 5000 Namur Belgium
- Shanghai Jiaotong University; School of Medicine; 280, South Chongqing road, 200025 Shanghai China
- Service de Pharmacologie-Pharmacothérapie-Toxicologie; Département des Sciences Fonctionnelles, Faculté de Médecine Vétérinaire; Université de Liège, Boulevard de Colonster B41; B-4000 Liège Belgique
| | - Jean-François Nisolle
- Département d'imagerie médicale; Centre Hospitalier Universitaire Mont Godinne-Dinant, Avenue Docteur Gaston-Therasse 1; 5530 Yvoir Belgique
| | - Wenhui Zhang
- Shanghai Jiaotong University; School of Medicine; 280, South Chongqing road, 200025 Shanghai China
| | - Liu Zhihong
- Département d'imagerie médicale; Centre Hospitalier Universitaire Mont Godinne-Dinant, Avenue Docteur Gaston-Therasse 1; 5530 Yvoir Belgique
- Orthopaedics Department, Ruijin Hospital; Shanghai Jiaotong University; School of Medicine, 197, Rui Jin Er Road; 200025 Shanghai China
| | - Peter Clegg
- Department of Musculoskeletal Biology; Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus; CH64 7TE Neston UK
| | - Pascal Gustin
- Service de Pharmacologie-Pharmacothérapie-Toxicologie; Département des Sciences Fonctionnelles, Faculté de Médecine Vétérinaire; Université de Liège, Boulevard de Colonster B41; B-4000 Liège Belgique
| |
Collapse
|