1
|
Santoro D, Saridomichelakis M, Eisenschenk M, Tamamoto-Mochizuki C, Hensel P, Pucheu-Haston C. Update on the skin barrier, cutaneous microbiome and host defence peptides in canine atopic dermatitis. Vet Dermatol 2024; 35:5-14. [PMID: 37990608 DOI: 10.1111/vde.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Canine atopic dermatitis (AD) is a complex inflammatory skin disease associated with cutaneous microbiome, immunological and skin barrier alterations. This review summarises the current evidence on skin barrier defects and on cutaneous microbiome dysfunction in canine AD. OBJECTIVE To this aim, online citation databases, abstracts and proceedings from international meetings on skin barrier and cutaneous microbiome published between 2015 and 2023 were reviewed. RESULTS Since the last update on the pathogenesis of canine AD, published by the International Committee on Allergic Diseases of Animals in 2015, 49 articles have been published on skin barrier function, cutaneous/aural innate immunity and the cutaneous/aural microbiome in atopic dogs. Skin barrier dysfunction and cutaneous microbial dysbiosis are essential players in the pathogenesis of canine AD. It is still unclear if such alterations are primary or secondary to cutaneous inflammation, although some evidence supports their primary involvement in the pathogenesis of canine AD. CONCLUSION AND CLINICAL RELEVANCE Although many studies have been published since 2015, the understanding of the cutaneous host-microbe interaction is still unclear, as is the role that cutaneous dysbiosis plays in the development and/or worsening of canine AD. More studies are needed aiming to design new therapeutic approaches to restore the skin barrier, to increase and optimise the cutaneous natural defences, and to rebalance the cutaneous microbiome.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
2
|
Gil N, Santoro D. Canine Models of Inflammatory Skin Diseases and Their Application in Pharmacological Research. Curr Protoc 2023; 3:e935. [PMID: 37996978 DOI: 10.1002/cpz1.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The purpose of this article is to provide an overview of existing pharmacological models of canine dermatitis. Canine models of dermatitis have contributed significantly to our current understanding of the pathology of dermatitis and to the development of corresponding pharmacological interventions. Specifically, canine atopic dermatitis (AD) is reviewed here, as it is one of the most common inflammatory skin diseases in dogs. Canine AD also shares clinicopathological features with human AD, making the dog a natural and optimal model for human disease. Thus, pharmacological models of canine AD may be uniquely applicable to human pharmacological research. In this article, particular attention is dedicated to relevant in vivo, in vitro, and ex vivo models of canine AD, skin barrier defect models, pruritus models, and skin immunology models. Additionally, models of superficial pyoderma and food allergy are also discussed. With understanding of findings from canine models, researchers can select the most salient features for future pharmacological drug development. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Natalia Gil
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Marsella R, Ahrens K, Wilkes R. Differences in Behavior between Normal and Atopic Keratinocytes in Culture: Pilot Studies. Vet Sci 2022; 9:vetsci9070329. [PMID: 35878346 PMCID: PMC9319359 DOI: 10.3390/vetsci9070329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Skin barrier dysfunction is important in atopic dermatitis and can be secondary to inflammation. Observation of keratinocytes in culture may show intrinsic differences. TransEpithelial Electrical Resistance (TEER) measures epithelial permeability. We cultured normal and atopic keratinocytes and found that TEER of atopic keratinocytes was significantly lower (p < 0.0001) than that of normals. Atopic keratinocytes grew upwards, first creating isolated dome-like structures and later horizontally into a monolayer. At time of confluence (D0), atopic keratinocytes were more differentiated, with higher filaggrin gene expression than normals. No differences existed between groups for TJ proteins (claudin, occludin, and Zonula Occludens-1) on D0 and D6. On D6, claudin and occludin were higher than D0, in normal (p = 0.0296 and p = 0.0011) and atopic keratinocytes (p = 0.0348 and 0.0491). Immunofluorescent staining showed nuclear location of filaggrin on D0 and cytoplasmic on D6. ANOVA showed increased cell size from D0 to D6 in both groups (effect of time, p = 0.0076) but no differences between groups. Significant subject effect (p = 0.0022) was found, indicating that cell size was subject-dependent but not disease-dependent. No difference for continuity for TJ protein existed between groups. These observations suggest that decreased TEER in atopics is not linked to TJ differences but is possibly linked to different growth behavior.
Collapse
|
4
|
Segarra S, Naiken T, Garnier J, Hamon V, Coussay N, Bernard FX. Enhanced In Vitro Expression of Filaggrin and Antimicrobial Peptides Following Application of Glycosaminoglycans and a Sphingomyelin-Rich Lipid Extract. Vet Sci 2022; 9:vetsci9070323. [PMID: 35878340 PMCID: PMC9316723 DOI: 10.3390/vetsci9070323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Filaggrin is an epidermal protein involved in skin barrier formation and hydration, whose expression is altered in canine atopic dermatitis (CAD). CAD patients also present an abnormal immune response with an altered expression of antimicrobial peptides (AMPs), such as β-defensins and cathelicidins. Sphingolipids and glycosaminoglycans (GAGs) have been reported to improve the skin barrier in several animal species, including dogs. Our objective was to evaluate the in vitro effects of a sphingomyelin-rich lipid extract (LE), a hyaluronic acid-rich GAG matrix, and their combination, on the expression of filaggrin and human β-defensin 2 (hBD-2). Filaggrin expression was quantified in a reconstructed human epidermis (RHE), and hBD-2 in normal human epidermal keratinocyte (NHEK) cultures. LE and GAGs were tested at 0.02 mg/mL, with or without adding a cytokine mix. A significant increase in mean hBD-2, compared to the control (99 pg/mL) was achieved with LE (138 pg/mL) and LE+GAGs (165 pg/mL). Filaggrin increased with GAGs (202% ± 83) and LE (193% ± 44) vs. the stimulated control, but this difference was statistically significant (p < 0.05) only with LE+GAGs (210% ± 39). In conclusion, the tested GAGs and LE enhance filaggrin and AMP expression in vitro, which might benefit CAD patients if applied in vivo.
Collapse
Affiliation(s)
- Sergi Segarra
- R&D Bioiberica S.A.U., 08950 Esplugues de Llobregat, Spain
- Correspondence: ; Tel.: +34-934904908
| | - Tanesha Naiken
- Bioalternatives, 86160 Gençay, France; (T.N.); (J.G.); (V.H.); (N.C.); (F.-X.B.)
| | - Julien Garnier
- Bioalternatives, 86160 Gençay, France; (T.N.); (J.G.); (V.H.); (N.C.); (F.-X.B.)
| | - Valérie Hamon
- Bioalternatives, 86160 Gençay, France; (T.N.); (J.G.); (V.H.); (N.C.); (F.-X.B.)
| | - Nathalie Coussay
- Bioalternatives, 86160 Gençay, France; (T.N.); (J.G.); (V.H.); (N.C.); (F.-X.B.)
| | | |
Collapse
|
5
|
Cruz-Silva I, Nunes VA, Rydlewski M, Gozzo AJ, Praxedes-Garcia P, Ferraz Carbonel AA, Tanaka AS, Araújo MDS. Disclosing the involvement of proteases in an eczema murine animal model: Perspectives for protease inhibitor-based therapies. Biochimie 2021; 194:1-12. [PMID: 34896570 DOI: 10.1016/j.biochi.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Eczema is a skin condition characterized by itchy and inflammatory patches. The accumulation of neutrophils and the imbalance between enzymes and their inhibitors appears to be related to this condition. We proposed a neutrophil elastase (NE)-based eczema model in mice in order to verify histopathological features as well as the expression and activity of proteases and inhibitors. Mice skins were topically administered with human NE (0-2 pmol/cm2) for 24-168 h. It was observed thickening of epidermis, parakeratosis, spongiosis and leukocyte infiltration. Also, NE-treated skins presented high activity of epidermal kallikreins 5 and 7, and cathepsin B on synthetic substrates, and expression evaluated by RT-qPCR. The proteolytic activity was inhibited by soybean trypsin inhibitor, CA074 and Caesalpinia echinata kallikrein inhibitor (CeKI). The topic application of CeKI reversed eczema phenotype in NE-treated skins. Elafin expression was shown to be increased in NE-treated skins. These results suggest that the NE may trigger morphological and biochemical changes in skin similar to those observed in eczematous diseases. In addition to the establishment of this in vivo model, this work opens perspectives for the use of protease inhibitor-based drugs for the management of this skin condition.
Collapse
Affiliation(s)
- Ilana Cruz-Silva
- Department of Biochemistry, Universidade Federal de São Paulo, SP, Brazil; Centro Universitário São Camilo, SP, Brazil
| | - Viviane Abreu Nunes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, Universidade de São Paulo, SP, Brazil.
| | - Mariana Rydlewski
- Department of Biochemistry, Universidade Federal de São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Human filaggrin (FLG) plays a key role in epidermal barrier function, and loss-of-function mutations of its gene are primarily responsible for the development of human atopic dermatitis (AD). FLG expression is also reduced in the epidermis of atopic patients, due to the transcriptional effect of Th2 type cytokines. Canine atopic dermatitis (CAD) is a prevalent skin disease that shares many clinical and pathogenic features with its human homologue. The aim of this review is discuss current knowledge on canine filaggrin (Flg) in both healthy and atopic dogs, as compared to the human protein. Although the molecular structures of the two proteins, as deduced from the sequences of their gene, are different, their sites of expression and their proteolytic processing in the normal epidermis are similar. Concerning the expression of Flg in CAD, conflicting results have been published at the mRNA level and little accurate information is available at the protein level. It derives from a large precursor, named profilaggrin (proFLG), formed by several FLG units and stored in keratohyalin granules of the stratum granulosum. Canine and human proFLG sequences display little amino acid similarity (33% as shown using the Basic Local Alignment Search Tool (BLAST)) except at the level of the S100 homologous part of the N-terminus (75%). Genetic studies in the dog are at an early stage and are limited by the variety of breeds and the small number of cases included. Many questions remain unanswered about the involvement of Flg in CAD pathogenesis.
Collapse
Affiliation(s)
- Daniel Combarros
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France.,Université de Toulouse, ENVT, Toulouse, France
| | - Marie-Christine Cadiergues
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France.,Université de Toulouse, ENVT, Toulouse, France
| | - Michel Simon
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France
| |
Collapse
|
7
|
Gedon NKY, Mueller RS. Atopic dermatitis in cats and dogs: a difficult disease for animals and owners. Clin Transl Allergy 2018; 8:41. [PMID: 30323921 PMCID: PMC6172809 DOI: 10.1186/s13601-018-0228-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of this review article is to give an overview of atopic dermatitis in companion animals and of recent developments including knowledge on immunological background, novel treatment options and difficulties in disease management. The prevalence of hypersensitivities seems to be increasing. The pathogenetic mechanisms are not fully understood, yet multiple gene abnormalities and altered immunological processes are involved. In dogs and cats, the diagnosis of atopic dermatitis is based on history, clinical examination and exclusion of other differential diagnoses. Intradermal testing or testing for serum allergen-specific Immunoglobulin E is only used to identify allergens for inclusion in the extract for allergen immunotherapy. Symptomatic therapy includes glucocorticoids, ciclosporin, essential fatty acids and antihistamines. A selective janus kinase 1 inhibitor and a caninized monoclonal interleukin-31 antibody are the newest options for symptomatic treatment, although longterm effects still need to be assessed. The chronic and often severe nature of the disease, the costly diagnostic workup, frequent clinical flares and lifelong treatment are challenging for owners, pets and veterinarians. Patience and excellent communication skills are needed to achieve a good owner compliance and satisfactory clinical outcome for the animal.
Collapse
Affiliation(s)
- Natalie Katharina Yvonne Gedon
- Small Animal Medicine Clinic, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, Veterinaerstraße 13, 80539 Munich, Germany
| | - Ralf Steffen Mueller
- Small Animal Medicine Clinic, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, Veterinaerstraße 13, 80539 Munich, Germany
| |
Collapse
|
8
|
Marsella R, De Benedetto A. Atopic Dermatitis in Animals and People: An Update and Comparative Review. Vet Sci 2017; 4:vetsci4030037. [PMID: 29056696 PMCID: PMC5644664 DOI: 10.3390/vetsci4030037] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis is an extremely common, pruritic, and frustrating disease to treat in both people and animals. Atopic dermatitis is multifactorial and results from complex interactions between genetic and environmental factors. Much progress has been done in recent years in terms of understanding the complex pathogenesis of this clinical syndrome and the identification of new treatments. As we learn more about it, we appreciate the striking similarities that exist in the clinical manifestations of this disease across species. Both in animals and people, atopic disease is becoming increasingly common and important similarities exist in terms of immunologic aberrations and the propensity for allergic sensitization. The purpose of this review is to highlight the most recent views on atopic dermatitis in both domestic species and in people emphasizing the similarities and the differences. A comparative approach can be beneficial in understanding the natural course of this disease and the variable response to existing therapies.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Dermatology, College of Medicine, University of Florida, 4037 NW 86 Terrace, Gainesville, FL 32606, USA.
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32610, USA.
| | - Anna De Benedetto
- Department of Dermatology, College of Medicine, University of Florida, 4037 NW 86 Terrace, Gainesville, FL 32606, USA.
| |
Collapse
|
9
|
Fanton N, Santoro D, Cornegliani L, Marsella R. Increased filaggrin-metabolizing enzyme activity in atopic skin: a pilot study using a canine model of atopic dermatitis. Vet Dermatol 2017; 28:479-e111. [DOI: 10.1111/vde.12443] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Fanton
- Clinica Veterinaria San Siro; via Lampugnano 99 Milano 20151 Italy
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16 Ave. Gainesville FL 32610 USA
| | | | - Rosanna Marsella
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16 Ave. Gainesville FL 32610 USA
| |
Collapse
|