1
|
Che Y, Wu R, Li H, Wang L, Wu X, Chen Q, Chen R, Zhou L. Molecular characterization of the integrative and conjugative elements harbouring multidrug resistance genes in Glaesserella parasuis. Vet Microbiol 2024; 291:110014. [PMID: 38335675 DOI: 10.1016/j.vetmic.2024.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
It is widely known that integrative and conjugative elements (ICEs) play an important role in the transmission of resistance genes and other exogenous genes. The present study aimed to characterize the three novel ICEs including ICEGpa76, ICEGpa44, and ICEGpa11, from Glaesserella parasuis. The ICEs from G. parasuis strains d76, Z44, and XP11 were predicted and identified by whole-genome sequencing (WGS) analysis, ICEfinder, and PCR. Characterization of G. parasuis strains carrying ICEs were determined by conjugation assay, antimicrobial susceptibility testing, WGS, phylogenetic analysis, and comparative sequence analysis.The WGS results showed that three ICEs from G. parasuis have a common genetic backbone belonging to characteristics ofthe ICEHpa1 family. The sequence comparison showed that the ICEHpa1 family has five hot spots (HSs) determined by IS6, IS110, and IS256. Moreover, two variable regions (VRs), VR1 and VR2 were determined by multidrug resistance genes and the rearrangement hotspot (rhs) family, respectively. VR1 consists of multidrug resistance genes, ISApl1s, and other accessory genes, while VR2 is composed of IS4, rhs family, transposase, and hypothetical protein genes. Conjugation experiments and MICs revealed that three ICEs could be transferred to G. parasuis strain IV52, indicating these three ICEs could be transmitted horizontally among G. parasuis strains. Additionally, the difference in resistance genes from ICEs might be due to the insertion function of the ISApl1s in VR1, and the rhs family in VR2 might evolve andthen be stably inherited in G. parasuis. These results further elucidated the transmission mechanism of exogenous genes in G. parasuis.
Collapse
Affiliation(s)
- Yongliang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Renjie Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hongjie Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Longbai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xuemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Qiuyong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Rujing Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Lunjiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China.
| |
Collapse
|
2
|
Zhu C, Cai J, An J, Zhang B, Li Y. A Florfenicol-Resistant Plasmid Shuttling Between Actinobacillus pleuropneumoniae and Glaesserella parasuis. Microb Drug Resist 2024. [PMID: 38364190 DOI: 10.1089/mdr.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Abstract
Porcine contagious pleuropneumonia, caused by Actinobacillus pleuropneumoniae, has resulted in significant economic losses to the swine industry. Although antibiotics are commonly employed to control this disease, their widespread use or misuse can lead to the development of antibiotic resistance in A. pleuropneumoniae. Consequently, it is crucial to conduct antimicrobial susceptibility testing on clinical isolates. In our study, we identified one strain of A. pleuropneumoniae with resistance to florfenicol and extracted a 5919 bp plasmid named pAPPJY, which confers florfenicol resistance. Sequence analysis revealed that the plasmid contains four open reading frames, namely rep, antioxin vbha family protein, floR, and a partial copy of lysr. Although a few variations in gene position were observed, the plasmid sequence exhibits a high degree of similarity to other florfenicol-resistant plasmids found in Glaesserella parasuis and A. pleuropneumoniae. Therefore, it is possible that the pAPPJY plasmid functions as a shuttle, facilitating the spread of florfenicol resistance between G. parasuis and A. pleuropneumoniae. In addition, partial recombination may occur during bacterial propagation. In conclusion, this study highlights the horizontal transmission of antibiotic resistance among different bacterial species through plasmids, underscoring the need for increased attention to antibiotic usage.
Collapse
Affiliation(s)
- Chenguang Zhu
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinshuang Cai
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiahui An
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Baoge Zhang
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yufeng Li
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Sun H, Li M, Bai Y, Sun Y, Zhu C, Xia X, Zhang H, Luo W, Zhang W, Wen Y, Bai Y, Wang L, Hu J. Preliminary view of the distribution and spread of the plasmid-mediated resistance genes in Glaesserella parasuis. J Med Microbiol 2023; 72. [PMID: 38112519 DOI: 10.1099/jmm.0.001767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Introduction. Various plasmid-mediated resistance genes have been reported in Glaesserella parasuis, but little is known about their global distribution features, evolution pattern and spread.Gap Statement. The potential mobilization mechanisms of resistance plasmids in G. parasuis have been poorly explored.Aim. The aim of the study was to investigate the prevalence and diversity of plasmid-mediated resistance genes among G. parasuis isolates, and focus on the analysis of the features of the resistance plasmids from G. parasuis.Method. The plasmids tested were sequenced using the Illumina HiSeq platform in conjunction with PCR and inverted PCR. The susceptibility of the host strains was determined by broth microdilution. The transfer of plasmids tested was conducted by electroporation. The sequence data were compared using bioinformatics tools and the data from our laboratory and the National Center for Biotechnology Information (NCBI) database.Results. Nineteen plasmids were identified from our laboratory and these resistance plasmids were functional and transferable. Moreover, we clustered five types of genetic backbones of plasmids from G. parasuis and revealed the global distribution features of the plasmid-mediated resistance genes.Conclusions. This is the first report of the coexistence of tet(H)-bearing type I plasmid and lnu(C)-bearing type II plasmid in one G. parasuis clinical isolate. In addition, this study provides the first view of the global distribution of plasmid-mediated resistance genes and classifies the plasmids in G. parasuis according to their backbone regions.
Collapse
Affiliation(s)
- Huarun Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| | - Minghui Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Yilin Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| | - Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| | - Weiyu Luo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| | - Wei Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| | - Yuliang Wen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, PR China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, PR China
| |
Collapse
|
4
|
Che Y, Wu R, Li H, Wang L, Wu X, Chen Q, Chen R, Zhou L. Characterization of the plasmids harbouring the florfenicol resistance gene floR in Glaesserella parasuis and Actinobacillus indolicus. J Glob Antimicrob Resist 2023; 35:163-171. [PMID: 37726088 DOI: 10.1016/j.jgar.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVES The aim of this study was to characterize the floR-carrying plasmids originating from Glaesserella parasuis and Actinobacillus indolicus isolated from pigs with respiratory disease in China. METHODS A total of 125 G. parasuis and 28 A. indolicus strains collected between 2009 and 2022 were screened for florfenicol resistance. Characterization of floR-positive isolates and plasmids were determined by antimicrobial susceptibility testing, serotyping, multilocus sequence typing (MLST), conjugation and transformation assays, whole-genome sequencing (WGS), and phylogenetic analysis. RESULTS One A. indolicus and six G. parasuis were identified as positive for floR. The six G. parasuis were assigned to four different serovars, including serovars 6, 7, 9, and unknown. In addition to strain XP11, six floR genes were located on plasmids. The six floR-bearing plasmids could be transformed into Pasteurella multocida and divided into two different types, including ∼5000 bp and ∼6000 bp plasmids. The ∼5000 bp plasmids consisting of rep, lysR, mobB, and floR genes, exhibited high similarity among Pasteurellaceae bacteria. Furthermore, the ∼6000 bp plasmids, consisting of rep, lysR, mobC, mobA/L, and floR genes, showed high similarity between G. parasuis and Actinobacillus Spp. Notably, WGS results showed that the floR modules of the two types of plasmids could be transferred and integrated into the diverse Pasteurellaceae- origined plasmids. CONCLUSION This study firstly reported the characterization of floR-carrying plasmids from A. indolicus and a non-virulent serovar of G. parasuis in pigs in China and elucidated the transmission mechanism of the floR resistance gene among the Pasteurellaceae family.
Collapse
Affiliation(s)
- Yongliang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Renjie Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Hongjie Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Longbai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xuemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Qiuyong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Rujing Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Lunjiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China.
| |
Collapse
|
5
|
Somogyi Z, Mag P, Simon R, Kerek Á, Szabó P, Albert E, Biksi I, Jerzsele Á. Pharmacokinetics and Pharmacodynamics of Florfenicol in Plasma and Synovial Fluid of Pigs at a Dose of 30 mg/kg bw Following Intramuscular Administration. Antibiotics (Basel) 2023; 12:antibiotics12040758. [PMID: 37107120 PMCID: PMC10135420 DOI: 10.3390/antibiotics12040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A major problem of our time is the ever-increasing resistance to antimicrobial agents in bacterial populations. One of the most effective ways to prevent these problems is to target antibacterial therapies for specific diseases. In this study, we investigated the in vitro effectiveness of florfenicol against S. suis, which can cause severe arthritis and septicemia in swine herds. The pharmacokinetic and pharmacodynamic properties of florfenicol in porcine plasma and synovial fluid were determined. After a single intramuscular administration of florfenicol at 30 mg/kgbw, the AUC0-∞ was 164.45 ± 34.18 µg/mL × h and the maximum plasma concentration was 8.15 ± 3.11 µg/mL, which was reached in 1.40 ± 0.66 h, whereas, in the synovial fluid, these values were 64.57 ± 30.37 µg/mL × h, 4.51 ± 1.16 µg/mL and 1.75 ± 1.16 h, respectively. Based on the MIC values of the 73 S. suis isolates tested, the MIC50 and MIC90 values were 2 µg/mL and 8 µg/mL, respectively. We successfully implemented a killing-time curve in pig synovial fluid as a matrix. Based on our findings, the PK/PD breakpoints of the bacteriostatic (E = 0), bactericidal (E = -3) and eradication (E = -4) effects of florfenicol were determined and MIC thresholds were calculated, which are the guiding indicators for the treatment of these diseases. The AUC24h/MIC values for bacteriostatic, bactericidal and eradication effects were 22.22 h, 76.88 h and 141.74 h, respectively, in synovial fluid, and 22.42 h, 86.49 h and 161.76 h, respectively, in plasma. The critical MIC values of florfenicol against S. suis regarding bacteriostatic, bactericidal and eradication effects in pig synovial fluid were 2.91 ± 1.37 µg/mL, 0.84 ± 0.39 µg/mL and 0.46 ± 0.21 µg/mL, respectively. These values provide a basis for further studies on the use of florfenicol. Furthermore, our research highlights the importance of investigating the pharmacokinetic properties of antibacterial agents at the site of infection and the pharmacodynamic properties of these agents against different bacteria in different media.
Collapse
Affiliation(s)
- Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Réka Simon
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Pál Szabó
- Research Center for Natural Sciences, Center for Structural Study, MS Metabolomics Laboratory, 1117 Budapest, Hungary
| | - Ervin Albert
- Department of Pathology, University of Veterinary Medicine Budapest, 2225 Üllő, Hungary
- SCG Diagnostics Ltd., 2437 Délegyháza, Hungary
| | - Imre Biksi
- Department of Pathology, University of Veterinary Medicine Budapest, 2225 Üllő, Hungary
- SCG Diagnostics Ltd., 2437 Délegyháza, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
6
|
JIA YC, CHEN X, ZHOU YY, YAN P, GUO Y, YIN RL, YUAN J, WANG LX, WANG XZ, YIN RH. Application of mouse model for evaluation of recombinant LpxC and GmhA as novel antigenic vaccine candidates of Glaesserella parasuis serotype 13. J Vet Med Sci 2021; 83:1500-1508. [PMID: 34393140 PMCID: PMC8569868 DOI: 10.1292/jvms.21-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) has been one of the bacteria affecting the large-scale swine industry. Lack of an effective vaccine has limited control of the disease, which has an effect on prevalence. In order to improve the cross-protection of vaccines, development on subunit vaccines has become a hot spot. In this study, we firstly cloned the lpxC and gmhA genes from G. parasuis serotype 13 isolates, and expressed and purified their proteins. The results showed that LpxC and GmhA can stimulate mice to produce IgG antibodies. Through testing the cytokine levels of interleukin 4 (IL-4), IL-10 and interferon-γ (IFN-γ), it is found that recombinant GmhA, the mixed LpxC and GmhA can stimulate the body to produce Th1 and Th2 immune responses, while recombinant LpxC and inactivated bacteria can only produce Th2 immune responses. On the protection rate for mice, recombinant LpxC, GmhA and the mixture of LpxC and GmhA can provide 50%, 50% and 60% protection for lethal dose of G. parasuis infection, respectively. The partial protection achieved by the recombinant LpxC and GmhA supports their potential as novel vaccine candidate antigens against G. parasuis.
Collapse
Affiliation(s)
- Yong C. JIA
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin CHEN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Y. ZHOU
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ping YAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ying GUO
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Rong L. YIN
- Research Academy of Animal Husbandry and Veterinary Medicine
Sciences of Jilin Province, Changchun 130062, China
| | - Jing YUAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Lin X. WANG
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Z. WANG
- Liaoning Agricultural Technical College, Yingkou, 115009,
China
| | - Rong H. YIN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Costa-Hurtado M, Barba-Vidal E, Maldonado J, Aragon V. Update on Glässer's disease: How to control the disease under restrictive use of antimicrobials. Vet Microbiol 2020; 242:108595. [PMID: 32122599 DOI: 10.1016/j.vetmic.2020.108595] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/27/2023]
Abstract
Antimicrobials have been commonly used to control bacterial diseases in farm animals. The efficacy of these drugs deterred the development of other control measures, such as vaccines, which are currently getting more attention due to the increased concern about antimicrobial resistance. Glässer's disease is caused by Glaesserella (Haemophilus) parasuis and affects pork production around the world. Balance between colonization and immunity seems to be essential in disease control. Reduction in antimicrobial use in veterinary medicine requires the implementation of preventive measures, based on alternative tools such as vaccination and other strategies to guarantee a beneficial microbial colonization of the animals. The present review summarizes and discusses the current knowledge on diagnosis and control of Glässer's disease, including prospects on alternatives to antimicrobials.
Collapse
Affiliation(s)
- Mar Costa-Hurtado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | | | | | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| |
Collapse
|