1
|
de Sant’Ana FJF, Blasco E, Pumarola M. Immunohistochemical Expression of Tenascin-C in Canine Meningiomas. Vet Sci 2024; 11:462. [PMID: 39453053 PMCID: PMC11511405 DOI: 10.3390/vetsci11100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
In humans, tenascin-C (TN-C) expression has been detected in more aggressive neoplasms of the central nervous system, such as gliomas and meningiomas. No study has analyzed the immune expression of TN-C in canine meningioma. The current study aimed to investigate the immunohistochemical distribution of TN-C in different grades of canine meningiomas. Twenty-one cases of canine meningioma (12 grade I, 6 grade II, and 3 grade III) were analyzed. All samples were examined by immunohistochemistry with the following antibodies: TN-C, epithelial membrane antigen (EMA), Ki-67, pan-cytokeratin (Pan CK), and vimentin. The histopathological diagnosis of meningioma was reinforced with the positive labeling of vimentin (moderate to strong) and EMA (mild to moderate) in neoplastic cells in most cases, independently of its grade or subtype. The immunoreactivity of TN-C was irregular: mild in grade I, moderate in grade II, and moderate to severe in grade III neoplasms. Usually, immune positivity was observed in the stroma and perivascular space in all subtypes. In addition, the concentric whorls of neoplastic cells were labeled positive in some psammomatous and transitional meningiomas. The reaction to TN-C was more significant in grade II and III tumors. The immunohistochemical findings of the current study suggest that TN-C can act as a stromal marker, mainly in grade II or III meningiomas.
Collapse
Affiliation(s)
- Fabiano José Ferreira de Sant’Ana
- Laboratório de Diagnóstico Patológico Veterinário (LDPV), Universidade de Brasília (UnB), Brasília-Distrito Federal 70636-200, Brazil
| | - Ester Blasco
- Unitat de Patologia Murina i Comparada (UPMiC), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (E.B.); (M.P.)
| | - Martí Pumarola
- Unitat de Patologia Murina i Comparada (UPMiC), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (E.B.); (M.P.)
| |
Collapse
|
2
|
Rissi DR, Miller AD, Demeter EA, Church ME, Koehler JW. Diagnostic immunohistochemistry of primary and secondary central nervous system neoplasms of dogs and cats. J Vet Diagn Invest 2024; 36:153-168. [PMID: 38234003 DOI: 10.1177/10406387231221858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The diagnosis of primary and secondary CNS neoplasms of dogs and cats relies on histologic examination of autopsy or biopsy samples. In addition, many neoplasms must be further characterized by immunohistochemistry (IHC) for a more refined diagnosis in specific cases. Given the many investigations assessing the diagnostic and prognostic IHC profile of CNS neoplasms in the veterinary literature, it may be difficult for the diagnostic pathologist or pathology trainee to narrow the list of reliable diagnostic IHCs when facing a challenging case. Here we compile a comprehensive list of the most diagnostically relevant immunomarkers that should be utilized for the diagnostic support or confirmation of the most common primary and secondary CNS neoplasms of dogs and cats.
Collapse
Affiliation(s)
- Daniel R Rissi
- Athens Veterinary Diagnostic Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Andrew D Miller
- Department of Population Medicine and Diagnostic Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elena A Demeter
- Department of Population Medicine and Diagnostic Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Molly E Church
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer W Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|
4
|
Lu CH, Yu SH, Wu CH, Yeh JLS, Chang HW, Jeng CR, Chang YC. Effects of selective cyclooxygenase-2 inhibitor robenacoxib on primary cells derived from feline injection-site sarcoma. J Cell Mol Med 2023. [PMID: 37334757 PMCID: PMC10399534 DOI: 10.1111/jcmm.17717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 06/20/2023] Open
Abstract
Feline injection-site sarcomas (FISSs) are highly invasive malignant mesenchymal neoplasms that arise from injection sites in cats. Although the tumorigenesis of FISSs is still uncertain, there is a consensus that FISS is associated with chronic inflammation caused by irritation of injection-related trauma and foreign chemical substances. Chronic inflammation can provide a proper microenvironment for tumour development, which has been known as one of the risk factors of tumorigenesis in many tumours. To investigate the tumorigenesis of FISS and screen for its potential therapeutic targets, cyclooxygenase-2 (COX-2), an inflammation-enhancing enzyme, was selected as a target for this study. In vitro experiments using FISS- and normal tissue-derived primary cells and robenacoxib, a highly selective COX-2 inhibitor, were performed. The results demonstrated that expression of COX-2 could be detected in formalin-fixed and paraffin-embedded FISS tissues and FISS-derived primary cells. Cell viability, migration and colony formation of FISS-derived primary cells were inhibited, and cell apoptosis was enhanced by robenacoxib in a dose-dependent manner. However, susceptibility to robenacoxib varied in different lines of FISS primary cells and was not completely correlated with COX-2 expression. Our results suggest that COX-2 inhibitors could be potential adjuvant therapeutics against FISSs.
Collapse
Affiliation(s)
- Chen-Hui Lu
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ching-Ho Wu
- School of Veterinary Medicine, Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan
| | - Jason Lih-Seng Yeh
- School of Veterinary Medicine, Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| | - Chian-Ren Jeng
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| | - Yen-Chen Chang
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Rissi DR. A review of primary central nervous system neoplasms of cats. Vet Pathol 2023; 60:294-307. [PMID: 36803009 DOI: 10.1177/03009858231155400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Primary central nervous system (CNS) neoplasms are uncommonly diagnosed in cats. The majority of primary feline CNS neoplasms described in the veterinary literature consist of meningioma and glioma occurring mainly in the brain and less often in the spinal cord. Although most neoplasms can be diagnosed based on routine histologic evaluation, less typical tumors need to be further characterized using immunohistochemistry. This review compiles the relevant information about the most common primary CNS neoplasms of cats available in the veterinary literature, aiming to serve as a converging source of information for the topic.
Collapse
|
6
|
Deutschland M, Hoppe J, Gruber AD. Subcutaneous seeding following surgical excision of an intracranial meningioma in a cat. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2021; 49:60-66. [PMID: 33588467 DOI: 10.1055/a-1274-9244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Traditionally patient owners express their concerns that surgical or diagnostic procedures on a tumor may induce metastasis. In pets, this has been documented in only very rare occasions, e. g. needle path metastases after diagnostic fine needle biopsies of urinary bladder or prostatic tumors. Here, we describe a case of subcutaneous seeding of a feline intracranial grade 1 meningioma 6 months after surgical resection. A 10-year-old male neutered domestic shorthaired cat with typical neurological signs was diagnosed with an extra-axial contrast enhancing mass in the dorsal frontotemporal lobes using magnetic resonance imaging (MRI). Transfronto-parietal bone craniotomy was performed and the 24 × 19 × 22 mm large tumor was largely removed. Tumor recurrence after 12 months resulted in a second surgical tumor removal. In addition, 2 subcutaneous masses of 10 × 4 × 4 mm in size were removed at the site of the original surgical site which were fully separated from the recurring meningeal tumor by the intact frontal bone. Histology and immunohistochemistry suggested the same tumor growth in all 4 masses. Most likely the tumor seeding had been caused during the first surgery. After all, the risk of surgical seeding of a benign tumor seems very low.
Collapse
Affiliation(s)
| | - Judith Hoppe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin
| | - Achim D Gruber
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin
| |
Collapse
|
7
|
Cyclooxygenase-2 as a Biomarker with Diagnostic, Therapeutic, Prognostic, and Predictive Relevance in Small Animal Oncology. J Vet Res 2020; 64:151-160. [PMID: 32258812 PMCID: PMC7105978 DOI: 10.2478/jvetres-2020-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
In canine and feline populations, the number of neoplasm cases continues to increase around the world. Attempts are being made in centres of research to identify new biomarkers that speed up and improve the quality of oncological diagnostics and therapy in human and animal tumour patients. Cyclooxygenase-2 (COX-2) is a promising biomarker with increasing relevance to human oncology, but as yet with less application in veterinary oncology. The expression of COX-2 increases significantly during pathological processes involving inflammation, pain or fever. It is also overexpressed in humans presenting various types of tumours and in selected types of tumours in animals, particularly in dogs. This article discusses the expression of COX-2 in canine and feline tumours, the importance of COX-2 as a biomarker with diagnostic, therapeutic, prognostic and predictive relevance in oncology, and the clinical significance of inhibiting COX-2 overexpression in tumours.
Collapse
|
8
|
Partridge B, Rossmeisl JH. Companion animal models of neurological disease. J Neurosci Methods 2020; 331:108484. [PMID: 31733285 PMCID: PMC6942211 DOI: 10.1016/j.jneumeth.2019.108484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Clinical translation of novel therapeutics that improve the survival and quality of life of patients with neurological disease remains a challenge, with many investigational drug and device candidates failing in advanced stage clinical trials. Naturally occurring inherited and acquired neurological diseases, such as epilepsy, inborn errors of metabolism, brain tumors, spinal cord injury, and stroke occur frequently in companion animals, and many of these share epidemiologic, pathophysiologic and clinical features with their human counterparts. As companion animals have a relatively abbreviated lifespan and genetic background, are immunocompetent, share their environment with human caregivers, and can be clinically managed using techniques and tools similar to those used in humans, they have tremendous potential for increasing the predictive value of preclinical drug and device studies. Here, we review comparative features of spontaneous neurological diseases in companion animals with an emphasis on neuroimaging methods and features, illustrate their historical use in translational studies, and discuss inherent limitations associated with each disease model. Integration of companion animals with naturally occurring disease into preclinical studies can complement and expand the knowledge gained from studies in other animal models, accelerate or improve the manner in which research is translated to the human clinic, and ultimately generate discoveries that will benefit the health of humans and animals.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA.
| |
Collapse
|